FINITE ELEMENT SOLUTION OF THE WARPING TORSION USING THE EQUIVALENT BEAM-COLUMN ANALOGY IN MULTI-SPAN BEAMS

By

Heraldo Antonio Falconí López

A Thesis Submitted in Partial Fulfillment

of the Requirements for the Degree of

Master of Science

In

Civil Engineering

POLYTECHNIC UNIVERSITY OF PUERTO RICO SAN JUAN, PUERTO RICO

2011

Approved as to style and content:

Bernardo Deschapelles Duque, Ph.D. Chairperson, Graduate Committee

Héctor J. Cruzado Vélez, Ph.D. Member, Graduate Committee

Alberto L. Guzmán de la Cruz, Ph.D. Member, Graduate Committee

> Miriam Pabón, Ph.D. Dean Graduate School

www.manaraa.com

UMI Number: 1497635

All rights reserved

INFORMATION TO ALL USERS The quality of this reproduction is dependent on the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

UMI 1497635

Copyright 2011 by ProQuest LLC.

All rights reserved. This edition of the work is protected against unauthorized copying under Title 17, United States Code.

ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, MI 48106 - 1346

ACKNOWLEDGMENT

Thanks to my mother Esperanza López González, for her hands guided my first writing strokes; to my father Heraldo Falconí Sevilla, for imbuing me with a zest for high level knowledge; to my wife Carmen Flores Leveroni, for helping and reminding me the essence of simplicity when I tend to pursue the most of maximum and the least of minimum; and last but not least, to my advisor Dr. Bernardo Deschapelles Duque a talented faculty and practitioner who manages a wealth of information on engineering topics, depicts his vast and profound expertise both in research and practice, and is also a simplicity devotee for their help in my personal, academic and professional growth.

ABSTRACT

FINITE ELEMENT SOLUTION OF THE WARPING TORSION USING THE EQUIVALENT BEAM-COLUM ANALOGY IN MULTI-SPAN BEAMS 2011 HERALDO ANTONIO FALCONÍ LÓPEZ, B.S.C.E., PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ, LIMA, PERÚ M.S.C.E., POLYTECHNIC UNIVERSITY OF PUERTO RICO

Directed by: Prof. Bernardo Deschapelles Duque

A small, powerful, versatile and straightforward software application will be introduced to analyze problems of warping torsion by means of the analogy between the straight beam-column under mixed transverse and axial loading and the straight beam under restrained warping. This software, originally developed to analyze multi-span beam-columns immersed on elastic foundations, resorts to a high order finite element. Validation against a number of already solved cases will be provided, including, but not limited to the cases in the AISC-Design Guide 9. Additionally, the present work will provide a brief account on the first order general torsion theory, a discussion on the roles analogies play in sciences and engineering, an account on the equivalent beam-column analogy as special case of the equivalent beam on elastic foundation, some details of the aforesaid high-order-finite element, and a contribution of a novel convergence study regarding the axial tensile parameter.

www.manaraa.com

TABLE OF CONTENTS

AC	KNUW		
AB	STRAC	CT	
LIS	ST OF 7	ΓABLES	
LIS	ST OF I	FIGURES	
LIS	ST OF S	SYMBOLS	
СН	APTE	R	
1.	INTH	RODUCTION	••••
	1.1	The Restrained Warping Problem	••••
	1.2	Significance of this Work	••••
	1.5		•••
ว	RFV	IEW OF RELEVANT TOPICS AND LITERATURE	
2.	NE V		••••
2.	2.1	Significance of Analogies, Metaphors and Equivalences	
2.	2.1	Significance of Analogies, Metaphors and Equivalences2.1.1Concepts on Analogies, Metaphors and Equivalences	
2.	2.1	Significance of Analogies, Metaphors and Equivalences2.1.1Concepts on Analogies, Metaphors and Equivalences2.1.2Examples of Analogies	
2.	2.1 2.2	 Significance of Analogies, Metaphors and Equivalences 2.1.1 Concepts on Analogies, Metaphors and Equivalences 2.1.2 Examples of Analogies Contrasts between Saint Venant and Vlasov Torsions 	
2.	2.1 2.2 2.3	Significance of Analogies, Metaphors and Equivalences 2.1.1 Concepts on Analogies, Metaphors and Equivalences 2.1.2 Examples of Analogies Contrasts between Saint Venant and Vlasov Torsions Definition of Shear Center	
2.	 2.1 2.2 2.3 2.4 	Significance of Analogies, Metaphors and Equivalences 2.1.1 Concepts on Analogies, Metaphors and Equivalences 2.1.2 Examples of Analogies Contrasts between Saint Venant and Vlasov Torsions Definition of Shear Center Reclassification of Structural Elements as per TWB-Theory	
2.	2.1 2.2 2.3 2.4 2.5	Significance of Analogies, Metaphors and Equivalences 2.1.1 Concepts on Analogies, Metaphors and Equivalences 2.1.2 Examples of Analogies Contrasts between Saint Venant and Vlasov Torsions Definition of Shear Center Reclassification of Structural Elements as per TWB-Theory Evolution of Approaches to the Restrained Warping Problem	
2.	2.1 2.2 2.3 2.4 2.5 2.6	Significance of Analogies, Metaphors and Equivalences 2.1.1 Concepts on Analogies, Metaphors and Equivalences 2.1.2 Examples of Analogies Contrasts between Saint Venant and Vlasov Torsions Definition of Shear Center Reclassification of Structural Elements as per TWB-Theory Evolution of Approaches to the Restrained Warping Problem Some Features Introduced by the Restrained Warping Theory	
2.	2.1 2.2 2.3 2.4 2.5 2.6 2.7	Significance of Analogies, Metaphors and Equivalences 2.1.1 Concepts on Analogies, Metaphors and Equivalences 2.1.2 Examples of Analogies Contrasts between Saint Venant and Vlasov Torsions Definition of Shear Center Reclassification of Structural Elements as per TWB-Theory Evolution of Approaches to the Restrained Warping Problem Some Features Introduced by the Restrained Warping Theory The Beam-Column Analogy	
2.	2.1 2.2 2.3 2.4 2.5 2.6 2.7	Significance of Analogies, Metaphors and Equivalences 2.1.1 Concepts on Analogies, Metaphors and Equivalences 2.1.2 Examples of Analogies Contrasts between Saint Venant and Vlasov Torsions Definition of Shear Center Reclassification of Structural Elements as per TWB-Theory Evolution of Approaches to the Restrained Warping Problem Some Features Introduced by the Restrained Warping Theory The Beam-Column Differential Equation	
2.	2.1 2.2 2.3 2.4 2.5 2.6 2.7	Significance of Analogies, Metaphors and Equivalences 2.1.1 Concepts on Analogies, Metaphors and Equivalences 2.1.2 Examples of Analogies Contrasts between Saint Venant and Vlasov Torsions Definition of Shear Center Reclassification of Structural Elements as per TWB-Theory Evolution of Approaches to the Restrained Warping Problem Some Features Introduced by the Restrained Warping Theory The Beam-Column Differential Equation 2.7.1 The Beam-Column Differential Equation 2.7.2 Differential Equation of a Torsional TWB	
2.	2.1 2.2 2.3 2.4 2.5 2.6 2.7	Significance of Analogies, Metaphors and Equivalences 2.1.1 Concepts on Analogies, Metaphors and Equivalences 2.1.2 Examples of Analogies Contrasts between Saint Venant and Vlasov Torsions Definition of Shear Center Reclassification of Structural Elements as per TWB-Theory Evolution of Approaches to the Restrained Warping Problem Some Features Introduced by the Restrained Warping Theory The Beam-Column Differential Equation 2.7.1 The Beam-Column Differential Equation 2.7.2 Differential Equation of a Torsional TWB 2.7.3 The Analogue Beam-Column	
2.	2.1 2.2 2.3 2.4 2.5 2.6 2.7	Significance of Analogies, Metaphors and Equivalences 2.1.1 Concepts on Analogies, Metaphors and Equivalences 2.1.2 Examples of Analogies Contrasts between Saint Venant and Vlasov Torsions Definition of Shear Center Reclassification of Structural Elements as per TWB-Theory Evolution of Approaches to the Restrained Warping Problem Some Features Introduced by the Restrained Warping Theory The Beam-Column Differential Equation 2.7.1 The Beam-Column Differential Equation 2.7.2 Differential Equation of a Torsional TWB 2.7.3 The Analogue Beam-Column 2.7.4 Boundary Conditions and Equivalence of Symbols	
2.	 2.1 2.2 2.3 2.4 2.5 2.6 2.7 	Significance of Analogies, Metaphors and Equivalences 2.1.1 Concepts on Analogies, Metaphors and Equivalences 2.1.2 Examples of Analogies Contrasts between Saint Venant and Vlasov Torsions Definition of Shear Center Reclassification of Structural Elements as per TWB-Theory Evolution of Approaches to the Restrained Warping Problem Some Features Introduced by the Restrained Warping Theory The Beam-Column Differential Equation 2.7.1 The Beam-Column Differential Equation 2.7.3 The Analogue Beam-Column 2.7.4 Boundary Conditions and Equivalence of Symbols The High Degree 9-DOF-Bar Element	
2.	 2.1 2.2 2.3 2.4 2.5 2.6 2.7 	Significance of Analogies, Metaphors and Equivalences 2.1.1 Concepts on Analogies, Metaphors and Equivalences 2.1.2 Examples of Analogies Contrasts between Saint Venant and Vlasov Torsions Definition of Shear Center Reclassification of Structural Elements as per TWB-Theory Evolution of Approaches to the Restrained Warping Problem Some Features Introduced by the Restrained Warping Theory The Beam-Column Differential Equation 2.7.1 The Beam-Column Differential Equation 2.7.2 Differential Equation of a Torsional TWB 2.7.3 The Analogue Beam-Column 2.7.4 Boundary Conditions and Equivalence of Symbols The High Degree 9-DOF-Bar Element 2.8.1 Expediency and Importance of the Non Nodal DOF	

		2.8.3	Field of Transverse Displacements of the 6-DOF BE	41
		2.8.4	Shape Function Matrix [N] of the 6-DOF BE	42
		2.8.5	Geometric Interpretation of the Shape Function [N]	42
		2.8.6	The 6-DOF BE Elastic Matrix [B]	43
		2.8.7	The 6-DOF BE Soil Normal Stiffness Contribution Matrix	44
		2.8.8	Load Consistent Vectors for the 6-DOF BE	44
	2.9	Softwa	re Application	46
5.	OBJ	ECTIVES	S AND METHOD	49
	3.1	Scope		49
	3.2	Metho	dology	50
		3.2.1	Convergence Study	50
		3.2.2	List of Case Studies	61
		3.2.3	Case Study One	62
		3.2.4	Case Study Two	63
		3.2.5	Case Study Three	65
		3.2.6	Case Study Four	68
		3.2.7	Case Study Five	71
		3.2.8	Case Study Six	72
		3.2.9	Case Study Seven	76
		3.2.10	Case Study Eight	82
		3.2.11	Results' Interpretation	86
I.	CON	CLUSIO	NS AND RECOMMENDATIONS	89
	4.1	Conclu	isions	89
	4.2	Recom	mendations	89
APF	PENDI	CES		
۱.	BAR	CANTII	LEVERED AT MIDSPAN	91
3.	BAR	RESTRA	AINED AGAINST TWIST AT MIDSPAN	98
2.	CAN	TILEVE	RED SINGLE SPAN BAR	113
).	AISC	C-DG9-EX	XAMPLE 5.1	119
E.	AISC	C-DG9-EX	XAMPLE 5.4	138
7.	AISC	C-DG9-EX	XAMPLE 5.5	166
J.	BOO	THBY'S	TORSION PROBLEM	207
	MEDWADOWSKI'S TORSION PROBLEM 28		200	

IBLIOGRAPHY

LIST OF TABLES

Tabl	e	Page
1.	Flexure and Warping Analogies	12
2.	Internal Diaphragms in Box Girders and Analog Supports	15
3.	Analogue Components between a TWB and a BC	35
4.	Torsional Conditions in TWB from AISC-DG 9	36
5.	All the DOFs' Definitions in the 9DOF-BE	38
6.	The 9-DOF-BE Elastic Stiffness Matrix	38
7.	Relative % Entry Error in Condensed Matrix for Different λ Values	59

LIST OF FIGURES

Figu	re	Page
1.	Free (Left) and Restrained (Right) Warping	2
2.	Load Location Exerts Influence along the Beam	2
3.	Restrained Warping due to a Centered Axial Tensile Load	3
4.	Lateral Transverse Displacement u due to Torsion	4
5.	Shear and Normal Stresses due to Restrained Warping from DG-9	5
6.	The 9-DOF-Beam Element by Deschapelles	7
7.	Distortion in Box Girders	14
8.	Free Warping or Uniform Torsion	16
9.	Warped Cantilevered Beam with Torque at Far End	17
10.	Shear and Axial Stresses in Cantilevered Beam under a Far- End Torque	17
11.	Generator Definition for Vlasov	18
12.	Bending and Bending with Torsion Responses	19
13.	Young's Approach	21
14.	Shear Flux in Saint Venant Torsion	
15.	Bimoment and Related Stresses	
16.	Differential Element in a Thin-Walled Beam	27
17.	Centered Axial Load Producing Restrained Warping	
18.	Definition of Warping Function	
19.	Beam Column under Mixed Axial and Transverse Loading	
20.	Another BC Sign Convention with Similar Results	
21.	Analogue Model in Deformed Bar	

22.	BC Model in Equilibrium	34
23.	Equilibrium in Åkesson's Model	35
24.	Incorrect Overly Literal Interpretation of Akesson's Model	35
25.	The 9DOF Frame Element with its Non-Nodal DOF	37
26.	Torsional Loading Systems from AISC-DG9	41
27.	Four-DOF-BEF with Origin at Left Node	49
28.	Entry 1-1 in the FE and Exact Stiffness Matrixes in the 4DOF-TWB	55
29.	Entry 1-2 in the FE and Exact Stiffness Matrixes in the 4DOF-TWB	55
30.	Entry 1-3 in the FE and Exact Stiffness Matrixes in the 4DOF-TWB	56
31.	Entry 1-4 in the FE and Exact Stiffness Matrixes in the 4DOF-TWB	56
32.	Entry 2-2 in the FE and Exact Stiffness Matrixes in the 4DOF-TWB	56
33.	Entry 2-3 in the FE and Exact Stiffness Matrixes in the 4DOF-TWB	57
34.	Entry 2-4 in the FE and Exact Stiffness Matrixes in the 4DOF-TWB	57
35.	Entry 3-3 in the FE and Exact Stiffness Matrixes in the 4DOF-TWB	57
36.	Entry 3-4 in the FE and Exact Stiffness Matrixes in the 4DOF-TWB	58
37.	Entry 4-4 in the FE and Exact Stiffness Matrixes in the 4DOF-TWB	58
38.	Four and 6DOF FE Stiffness Matrix Convergence for BC	60
39.	Six-DOF FE Stiffness Matrix Convergence for BC	60
40.	Model of Parametric Experiment to Test the Software	62
41.	Elastic Line of the Beam Column Analogous to the TWB	63
42.	Asymptotic Behavior near Restraints from BMTORSWP	63
43.	Analogue EBC in 2nd Order Equilibrium	64
44.	Zero External Torque with Restrained Warping at First Span	64

45.	Input Data	64
46.	EBC with 6 Elements, $\theta=0$ at Midspan, 1K-in Torque at Far End	65
47.	TWB with 6 Elements, $\theta=0$ at Midspan, 1K-in Torque at Far End	65
48.	Model of Cantilevered Long Beam	66
49.	L=30", TWB Clamped at Near End, Torque at Far End, BMTORSWP	66
50.	L=30", Cantilevered Beam under Torsion, Exact Solution	67
51.	Twist Angle Third Derivative	67
52.	AISC-Design Guide 9, Example 5.1	68
53.	Shear Stress in Web and Flange at Midspan	69
54.	Two Solutions for Total Shear Stresses	69
55.	Shear Stress from Warping	69
56.	Normal Stresses due to Warping	70
57.	Superposition of Normal Stresses	70
58.	Comparisons Total of Flexure and Torsion Stresses	70
59.	TWB Cross Section and Interest Points along Beam	71
60.	Discrepancy in Total Maximum Normal Stresses in Interest Points	71
61.	No Discrepancy in Total Maximum Shear Stresses in Interest Points	72
62.	Discrepancies on Maximum Twist Angle and Location	72
63.	EBC Model for BMTORSWP	73
64.	Flexure and Torsion Effect	73
65.	Shear Stress due to Pure Torsion along the Beam and Profile	73
66.	Shear Stress due to Warping Torsion along the Beam and Profile	74
67.	Warping Normal Stresses along the Beam and Profile	74

68.	Combined Normal Stresses along the Beam and Profile	74
69.	Total Normal Stresses along the Beam and Profile	75
70.	Combined Normal Stresses along the Beam and Profile	75
71.	Summary of Total Shear along the Beam and Profile	76
72.	Boothby's Bending and Torsional Support Conditions	77
73.	Model of EBC with Finite Elements	77
74.	Stresses and Forces in Cross Section Profile	78
75.	Bimoment Results. BMTORSWP Output Shown in Red	78
76.	Bimoment Match between BMTORSWP and Boothby's	79
77.	Total and Warping Torque from BMTORSWP and Boothby	80
78.	BMTORSWP and Boothby's Stresses at Right Side of 1st Interior Support	81
79.	Continuous Crane Girder with Applied Torques	82
80.	EBC Model for BMTORSWP	82
81.	Section Properties and Profile Interest Points "s"	83
82.	Comparison of Bimoment Charts by Medwadowski and with BMTORSWP	84
83.	Comparison of Torque Charts by Medwadowski and with BMTORSWP	85

LIST OF SYMBOLS

3DOF RE	rod element with 3 degrees of freedom,
6-DOF BC	beam column with 6 degrees of freedom, also 6-DOF BE
6-DOF BE	beam element with 6 degrees of freedom,
9-DOF BC	beam column with 9 degrees of freedom, also 9-DOF BE
9-DOF BE	beam element with 9 degrees of freedom,
a	$L/2$, semi-length of finite element, or $\sqrt{EC_w/GJ} = 1/\lambda$ according to
	the AISC DG 9 nomenclature for TWB, in length units,
A	cross section area
AISC	American Institute of Steel Construction.
AISC-DG-9	Steel Design Guide Series No. 9.
b	a characteristic dimension of a TWB cross-section, width or
	height The convex contact width in a Winkler problem in
В	bimoment an abstraction in TWB theory force length ²
[B]	strain matrix defined by the generic curvature it is the 2^{nd}
	derivative of the shape function matrix [N]
BEF	beam on elastic foundation
BC	beam-column
BMCOL BMCOLG	original name of beam-column software renamed BMTORSWP to
Diffeol, Diffeold	undertake restrained warning problems
BMTORSW	after heam-torsion-warping 32-hit-software application
BMTORSWP	beam-torsion-warning with Portland adaptation for 64 hits
C C_{A}	warning constant for the cross section length ⁶
C_w, Ca	
d	a characteristic dimension of a TWB cross-section, width or height.
Ce	dimensionless factor in the 9-DOF- BC matrix
DOF	degree of freedom.
DG-9	Steel Design Guide Series No. 9.
E	modulus of elasticity of material force/length ²
EBEF	equivalent beam on elastic foundation.
{ g }	generic transversal field of displacements.
G	shear modulus of elasticity of material, force/length ² .
I	cross section inertia. $length^4$.
L	moment of inertia of one I-beam flange around the cross section
- j	
T	minor axis,
J IDW	Usification of the closs-section, length,
JBW L	Hall band width in a matrix, and normal modulus, a normation for the DC force/length ³
Ko 1	soil normal modulus, a parameter for the BC, force/length,
K	soli normal modulus multiplied by the convex contact width b ,
1	iorce/iength,
I	π / Λ characteristic wave length for a EBEF used in rail trucks,
	member length,
Le	maximum element length = $2N(ECw/GJ)$, in length units,
M	bending moment,

xi

N, NI, NJ	node, near node, far node, where $I < J$,
N	axial force always in the direction of the original straight BC,
[N], [N,x], [N,xx]	shape function matrix and 2 derivatives along the axial coordinate
	x in the finite element formulation,
Ne	minimum number of elements in a given span of length L , an
	integer > $(L/Le) = 0.5L \vee (GJ/ECw)$ in the TWB,
р	applied distortional load in force/length units,
q	transverse loading in the BC, force/length,
q_i	degree of freedom with the specific number <i>i</i> ,
{q}	vector of specific (reference) displacements along the DOFs in
	finite element formulation containing all the q_i ,
Q	applied shear in the BEF under mixed loading, force units,
\tilde{O}_{u}	vertical shearing force, always perpendicular to the original
$\boldsymbol{z}_{\boldsymbol{v}}$	straight BEF
0	shearing force normal to the deformed BFF elastic line
\mathfrak{L}_n	a distance from the her oxis in a galindrical her
r D	a distance from the dat axis in a cynnuncal dat,
	radius of a cyllication, teligui,
I_w, I_2	resisting moment due to restrained warping of the cross-section,
<i></i>	torce-length,
T_t, T_1	resisting moment of unrestrained cross-section, force times length,
TWB	thin-walled beam or bar,
TWM	thin-walled member,
<i>u</i> , <i>u</i> _s	displacement along the contour, lateral in the case of an I-beam
	flange, length,
и, v	generic axial and transverse displacements in the 9DOF element,
u_r	displacement perpendicular to the contour, length,
V_{f}	the shear occurring in each flange of an I-beam, force,
W	distributed constant load in lb/in or force/length units,
W	vector with powers of varying distributed loads in lb/in, a measure
	of distortion in box girder analysis,
x	$a\xi$, member longitudinal coordinate,
<i>y</i> , <i>y</i> ', <i>y</i> ", <i>y</i> "", <i>y</i> ""	longitudinal coordinate, and four derivatives,
Ζ	longitudinal coordinate, length,
αi	generalized displacements, coefficients of the polynomial
	expressing the field of the generic displacements used in the finite
c	element formulation,
δ	shell thickness, length,
$\frac{3}{2}$	a unit axial tensile strain, dimensionless, and r^{st} and r^{d} derivatives with respect to $-$
0, a0/az, a 0/az	angle, mostly torsional, and 1 and 3 derivatives with respect to z, deformational stiffnass of the girder per unit length in force write
к)	a characteristic BEE constant = $A_{\rm r} / A_{\rm E} N^{1/4}$ 1/in a characteristic
λ	dimensionless BC constant = $L(N/F_{\rm e})^{1/2}$ a characteristic
	dimensionless TWB constant = $L(IV/EI)$, a characteristic dimensionless TWB constant = $L(GI/F \cdot C_w)^{1/2}$
	(0) = (0)

xii

$ ho, ho_1$	initial and final radius of curvature of cross section contour, length,
	generalized distortional load per unit length in box girder analysis
σ_{y}	axial stress, force/length ² ,
τ	shearing stresses, force/length ²

CHAPTER 1

INTRODUCTION

St. Venant torsion theory does not suffice to predict the behavior of thin-walled members with open cross sections, commonly used in steel industry, subjected to unavoidable torsional loads. Thin-walled members behave according to Vlasov's treatise on 1st order general torsion and must be checked for restrained warping according to the AISC. Calculations of the warping effect are tedious and complex, even if using AISC design aids; and more so when designing multi-span beams under mixed torsion.

1.1 The Restrained Warping Problem

A cross section of a straight bar will rotate freely when undergoing two equal and opposite torques at its end nodes. The twist per unit length will be constant along the bar; this is known as uniform torsion, which can be studied separately from flexure and their effects superposed. However in the XX century there was a new advent in mechanics of materials: The first order general theory of torsional flexure. It is a relatively modern advance in mechanic of materials that combines the study of both uniform and non uniform torsion (Gjelsvik, 1981 and Rhodes, 1984.) See Figure 1.

Thin-walled bars under torsional loading with node restraints are mostly susceptible to develop axial stresses. In addition, applied loads are particularly transmissible quite a distance along the length of the bar, flouting St. Venant principle as shown in Figure 2 and Figure 3. First order general torsion analysis involves even more complicated studies of cross section properties, and loading effect allocation.

www.manaraa.com

In fact, the analysis gets more complicated in multi-span thin-walled members with open cross sections, and the number of calculations required for a comprehensive scrutiny of these torsional effects is paramount.

Figure 1. Free (Left) and Restrained (Right) Warping

Figure 2. Load Location Exerts Influence along the Beam

Vlasov (1961) is credited as the author of the seminal work on modern 1st order general torsion theory. He found that, due to their peculiar geometry, thin-walled bars should be studied like a particular case of shells, whose geometry influences the acting shear and its propagation. For example even a centered axial resultant load applied to a member could produce transverse lateral bending with a zone of non uniform distribution of stresses. This effect is important around the cross section minor axis for thin-walled elements like the I-beam in Figure 3 taken from Feodosiev (1972).

Figure 3. Restrained Warping due to a Centered Axial Tensile Load

The uniform or Saint Venant torsion Equation (1) is shown below; where $G \cdot J$ is the cross section torsional rigidity and θ is the angular twist around the longitudinal axis. The resisting moment for an unrestrained cross-section is:

$$T_t = G \cdot J \frac{d\theta}{dz} \,. \tag{1}$$

For a better understanding of the non-uniform torsion, it is useful to consider the particular case of a structural steel W shape whose lateral flanges undergo opposite curvatures due to a pair of lateral opposite shearing forces in the flanges. In the lateral

direction, these forces are in equilibrium and make a force couple with a moment arm h, the distance between flanges, which is a torque T_w around the longitudinal axis z as expressed in Equation (2):

$$T_w = V_f h . (2)$$

Moreover, the shear in each flange V_f may be derived by considering the beam lateral displacement u, parallel to the original major axis. Due to the fact that the beam cross section is symmetric and its rotation is relatively small, the lateral displacement $u = (h/2) \theta$ and its first derivative $u' = (h/2) \theta'$ are shown in Figure 4 and Equation (3):

Figure 4. Lateral Transverse Displacement u due to Torsion

$$\frac{du}{dz} = \frac{h}{2}\frac{d\theta}{dz}.$$
(3)

Due to the opposite lateral displacement of each flange, the system of lateral bending moments B and shears V_f in each flange produced by the lateral curvatures in each flanges is in equilibrium because those forces are opposite and equal in magnitude.

Therefore, the system is statically equivalent to zero. Equations (4) and (5) are shaped using the curvature formula and the appropriate sign convention. Shear and normal stresses shown in Figure 5 will appear in the member cross section. See Ugural (1987) and Timoshenko (1978).

$$B = -EI_f \frac{d^2 u}{dz^2} = -EI_f \frac{h}{2} \frac{d^2 \theta}{dz^2},$$
(4)

$$V_f = \frac{dB}{dz} = -EI_f \frac{d^3u}{dz^3} = -EI_f \frac{h}{2} \frac{d^3\theta}{dz^3},$$
(5)

where I_f is the moment of inertia of one flange around the cross section minor axis. Hence, Equation (2) will be transformed into Equation (6), and the total torque will be that of Equation (7):

$$T_w = -EI_f \frac{h^2}{2} \frac{d^3\theta}{dz^3},\tag{6}$$

$$T = T_t + T_w = G \cdot J \frac{d\theta}{dz} - E \cdot I_f \frac{h^2}{2} \frac{d^3\theta}{dz^3}.$$
 (7)

Figure 5. Shear and Normal Stresses due to Restrained Warping from DG-9

1.2 Significance of this Work

It is desirable, but not always possible, to avoid torsion: in slender structures, as steel structures, most structural members under torsion are not free to warp. In addition,

even when the ends are free to warp, internal restraint of warping is produced by torsional loading variations along the span (Bresler, 1963). In fact, structures undergo torsion quite frequently and open profiles are prone to suffer restrained warping stresses.

Open profiles are common in structural steel, crane girders, airplanes, naval structures, land vehicle with long frames including trucks and buses, box-girder bridges, and shear walls in high rise buildings including towers or elevator shafts. An I fact, restrained warping normal stresses might be critical design components.

Current practice calls for protective measures against the adverse effects of nonuniform torsion in case of members with modest resistance to restrained warping (AISC-DG-9). In thin-walled beam analysis, end restraints or changes in the internal torque along the length produce normal and shear stresses due to restrained warping (Figure 5). The problem of bars under mixed axial and transverse loads is a real predicament in structural engineering; particularly in the case of multi-span bars under mixed torsion.

1.3 Aims of this Work

The following is an account of the tasks that will be undertaken in the first two chapters of this work: First, a straightforward software application able to solve multispan TWB originally designed to analyze multi-span BEF subjected to three-parameterfoundations plus the geometric parameter of a tensile load will be selected. Second, a brief account on the first order general torsion theory and some of its major contributions will be provided. Third, the roles analogies play in engineering will be discussed including an account on the equivalent beam-column analogy. Fourth, some details of the high-order-finite element built in the software (Figure 6) will also be presented and discussed.

6

Afterwards, a convergence study of the size of the finite element to be used in the software application will be undertaken for the first time regarding two aspects: First, the effect of the geometric parameter of a tensile load will be studied for the first time, and second, the finite element stiffness matrix with 6 DOF used by the software will be studied. Then, a maximum finite element size will be recommended and used. Previous studies were made on the soil parameter, not in the geometric one, and a finite element stiffness matrix with 4 DOF was used as an upper limit for accuracy, instead of the original finite element stiffness matrix with 6 DOF.

Already analyzed single-span and multi-span beams in mixed torsion under distributed and concentrated torques with diverse boundary conditions will be reanalyzed to validate this software. The examples will be taken from different sources, including all the examples of restrained warping torsion contained in the AISC- Design Guide 9. Numerical data and curves will be provided. A performance experiment will be undertaken and analyzed with the software. Finally, user friendly adjustments to interact with the software will be implemented, and conclusions and recommendations will be presented. This study is not concerned with the analysis of box girders. However, one of the three soil parameters handled by the software would suffice to analyze box girders problems.

Figure 6. The 9-DOF-Beam Element by Deschapelles

CHAPTER 2

REVIEW OF RELEVANT TOPICS AND LITERATURE

The torsional flexure theory is only an approximate theory but supposes a great advance for engineering. Shear strains due to lateral flexure are neglected; just as the Navier hypothesis neglects shear strains in traditional bending theory, but shear strains due to torsion are indeed included (Gjelsvik, 1981).

2.1 Significance of Analogies, Metaphors and Equivalences

It is convenient to take into consideration that analogy is the only one of those introductory terms accepted in science language without a debate. The other terms could be considered rhetoric language, i.e., the word metaphor (the pursuit of the ability to use language or representations to generate the intended results) was borrowed from rhetoric.

The simple engineering practice known since Kirchoff times of denoting any complex number r + ix by a single symbol expressing in one vector both the real and the imaginary fields, (Kron, 1939) might be considered as an analogy, a metaphor or an equivalence. In many fields, including software engineering, metaphor refers to a somewhat sophisticated system resemblance, but positivists reject the use of rhetoric language in research¹ contrary to constructionists.

2.1.1 Concepts on Analogies, Metaphors and Equivalences

Analogy is a way of inferring properties of one lesser-known item from a similar better-known item on the basis of an acknowledged similarity between both of them. Modeling is the simplest statement or intellectual depiction of a process, concept,

¹According to dictionaries, constructionists find in the word rhetoric a useful meaning, because they construe or interpret. Positivist use the word rhetoric in the sense of unnecessary, because they believe in positivism, a thinking system founded by Comte, concerned with positive facts that rejects speculation.

operation or system. The modeling of an item or domain is the first step to identify analogies or equivalences. Thus, analogies and modeling are intertwined.

Analogies have been proven historically effective by making possible the findings and achievements in complex problems. Insights into two analogous systems are obtained by studying the easiest to conceive; thus improvements in the technique of solving problems in one mastered field favor the findings in the novel analogous field (Hetényi, 1966).

Analogies can be improved when basic assumptions are refined and redefined. For example, behavior (of beings) and computer output are not straightforward analogous for Cisek (1999), who thinks that behavior is more analogous to "a control process where actions are performed in order to affect perceptions..." Herbsleb (1999) states that metaphors, as opposed to straightforward analogies, help to recognize new or complex domains as if they were already understood.

Metaphors set up implicit conceptual foundations for the lesser-known domain, hence enlightening important unperceived characteristics but neglecting options and aspects of objects under scrutiny. Herbsleb (1999) considers analogies as a subgroup of metaphors. Conversely, Deschapelles (1987) conceives the bimoment as a metaphor included in the beam-column analogy. In fact, the use of this rhetoric language in research is always useful but not standard throughout interdisciplinary borders.

Analogies are not only useful but are also the core of the discipline of analog computer simulation. Mathematical models are analogous representations of reality or of other models that can be scrutinized not only by classical analytical and numerical

methods or digital computers, but also by means of analog computer simulation (James, 1971, Carlson, 1967).

2.1.2 Examples of Analogies

A good example of the practicality of analogies in engineering is the significant work by Wilby (1963) on the use of electronic analogy for the analysis of elastic shells. Another paradigm is the work of Kron (1939) on the analogy between electrical and mechanical networks (3D frames), which provides a complete algorithm in matrix form solving 3D frames: "Whatever the advantages of steel frames offer for the construction of buildings, analogous advantages are offered by the use of tensor spinor²."

According to a work by Mindlin and Salvadori that appears in Hetényi (1966), in Kron analogy, currents represent stresses and voltage drops represent strains in the electric circuit. The equations of equilibrium in nodes are analogue to Kirchhoff's current law³. The compatibility conditions are analogue to Kirchhoff's voltage law⁴. Finally, Hooke's law is analogue to "Ohm's law $I = Y \cdot E$, so that the elastic constants are represented by lumped admittances *Y*."

Kelvin's fluid-flow analogy was very useful in picturing Saint Venant shear stress flux in terms of streamlines of an ideal fluid circulatory flow around the vortex inside a container tube with analogous cross section contour. Prandtl's analogy was very useful in studying the torsion problem (Den Hartog, 1952). Weibel's analogy helped to study the stress concentration at cross section fillets. Jacobsen's analogy assisted to study the torsion in a shaft of variable diameter, etc. (Timoshenko, 1953).

⁴ The sum of voltages drops E around every closed loop or mesh in the circuit must equal zero.

 ² Spinor is a quantity resembling a tensor used to represent the spins of fermions (particles that obey the exclusion principle and Fermi-Dirac statistics whose spins are half an odd integer: 1/2, 3/2, 5/2, (Webster).
 ³ The summing up of all currents that enter a node is zero at every node.

Still nowadays same British consider that epoch-making moment distribution method of flexure structural analysis by Cross (1930, 1932, and 1954) and Grinter (1932, 1933) is a particular case of the systematic relaxation of constraints advanced later by Southwell (1935).

Samuelsson and Zienkiewicz (2006) consider that the Framework Method by Hrennikoff (1941) and the Lattice Analogy Method by McHenry (1942, 1943) are analogies which solve linear elasticity problems by modeling a continuum elastic media with "elastic lattices of suitably defined discrete components." Because the one who first coined the term finite element was Clough (1960) in an epoch-making paper, historically, Hrenikoff and McHenry may well be considered the grand-parents of the finite element method. The theory of open thin-walled beams shares with the finite element method the condition of latecomers in mechanics. And now, thanks to the development of digital computers, key advances in finite element method have taken place since the middle of the XX century.

However, the finite element genesis may well be dated back to the work of Lord Rayleigh in 1870s, later generalized by W. Ritz in 1900s. That is, to the times of the formulation of the variational Rayleigh-Ritz principle and the weighted-residual method by B. G. Galerkin (1915). In addition, the general theory of 3-D systems to solve the problem of a "self-contained space truss with the form of a closed polyhedron" was initiated by Möbius and independently developed by engineers like Föppl who published his works in 1892 calling these structures as lattice structures (Timoshenko, 1953).

The column analogy is used to solve many problems of mechanics. Magnitudes and directions can be modeled graphically like it is done with the old polygon of forces

and the funicular polygon—known since Varignon's times (in 1720s). The conjugated beam is an analogy to calculate beam deflections from the bending moments created by a made up M/EI loading. Mohr's circles are analogies that relate certain physic properties with the circumference geometry.

In page 144 of his book, Vlasov (1961) first proposed the use of the beam-column analogy by stating that the equation of a beam under mixed torsion is "analogous to the equation of the theory of transverse bending of an initially extended beam." He also listed the matching analogous terms between his law of sectorial areas relevant to torsional bending and the law of plane sections applicable to flexural bending as shown in Table 1.

ruble 1. riexure une	
Bending in the plane Oyz (law of plane sections, Figure 87a)	Restrained torsion (law of sectorial areas, Figure 87b)
$J_{x} = \int_{F} y^{2} dF$ $S_{x} = \int_{F} y dF$	$J_{\omega} = \int_{F} \omega^2 dF$ $S_{\omega} = \int \omega dF$
$n = n (z)$ $n' = \frac{dn}{dz}$	$ \begin{aligned} \theta &= \overset{F}{\theta} (z) \\ \theta' &= \frac{d\theta}{dz} \end{aligned} $
$M_x = -EJ_x \eta''$ $Q_y = M'_x = -EJ_x \eta''$	$B = -EJ_{\omega}\theta''$ $H_{\omega} = B' = -EJ_{\omega}\theta'''$
$\sigma_x = \frac{M_x(z)}{J_x} v(s)$	$\sigma_{\omega} = \frac{B(z)}{J_{\omega}} \omega (s)$
$\tau_x = -\frac{Q_y(z) S_x(s)}{J_x \delta(s)}$ $q_y = q_y(z)$	$\tau_{\omega} = -\frac{H_{\omega}(z)S_{\omega}(s)}{J_{\omega}^{\delta}(s)}$ $m = m(z)$

 Table 1. Flexure and Warping Analogies

In addition, the solution of multi-span bars by means of the 3-bimomentsequation, an analog version of the 3-moments-equation or Clapeyron's equation was first proposed by Vlasov (1961) in page 145. Nevertheless, Medwadowski (1985) states that

Kollbrunner and Basler were the ones who proposed the 3 warping moment method in 1965 to solve the first order general torsion problem.

Boothby (1984) and Medwadowski (1985) works will be discussed later with more detail. They both acknowledged the beam-column-analogy to solve general torsion problems resorting to what they called a Bimoment Distribution Method and a Warping Moment Distribution Procedure respectively. These methods rely on principles similar to the moment distribution method of flexure structural analysis by Cross (1930, 1932, and 1954) and Grinter (1932-33).

In fact, the theory of beams on Winkler elastic foundations is an analogy between a continuous and a discrete model originally formulated to describe the discrete railroad track behavior. Hetényi (1961) states that this analogy is proficient if at least 4 separate elastic supports are provided to cover the characteristic wave length $l = \pi / \lambda$; where $\lambda = (k / 4E \cdot I)^{1/4}$, and k (lbs/in²) is the equivalent continuous normal modulus of the foundation ko times its contact width b.

The analysis of beam grillages or grid-works was developed as a consequence of the analysis of the railroad tracks, where the rails and the cross-ties intertwine similarly. An important application of beam grillages is found in ship structures. So beam grillages were analyzed by Muckle and Timoshenko (Heténti, 1966).

Vierendeel girders may be analyzed as analog grid-works. Beams unrestrained against deflection but restrained against angular rotations may be regarded as a special case of EBEF. In addition, Hetényi (1966) states: "...the effect of distributed rotational elastic restraint" is analogous to "an equivalent axial tensile force."

Other examples of the "Winkler problem" or BEF analogies are the floor-beam elastic interaction and the wall of a circular cylindrical tank with radius r and thickness t with a vertical axis of symmetry under axially symmetric loading and support (Lightfoot, 1961). Wright (1968) used the BEF analogy to analyze distorted box girders. In the BEF method, solutions are obtained either analytically or numerically by the Fourier series or by moment distribution methods as in Lightfoot (1961).

Hsu (1995) introduced a finite element formulation in the BEF analogy, so creating the EBEF analogy, and applied to the solution of multi-span beams. Spans are considered flanked by supports or internal restraints, namely diaphragms that might provide or not shear and/or warping restraints as shown in Table 2.

Figure 7. Distortion in Box Girders

It is important to notice that the fundamental differential equation of curved box girders, as closed TWB, is not analogous to the beam-column under mixed axial and transverse loading. Box girders undergo distortions that put cross section profiles out of shape due to the force system shown in Figure 7.

The differential equation of the beam on elastic foundation is $E \cdot I \cdot y''' + k \cdot y = q$ (Miranda, 1966), where *E*, *I*, *y*, *k*, and *q* are the modulus of elasticity, the cross section inertia, the deflection, the soil modulus, and the intensity of the distributed transverse load at that point respectively.

Internal Diaphragm			
Deformation Allowed		Possible Configuration	Support in BEF
Shear	Warping		
Yes	Yes	truss type	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
No	Yes	frame type thin plate	J Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z
No	No	solid plate, stiffened	fixed support

Table 2. Internal Diaphragms in Box Girders and Analog Supports

The box girder (closed TWB) governing differential equation has the form $E \cdot Cd \cdot W''' - \kappa \cdot W = \rho$; therefore, it is analogous to the BEF differential equation according to Wright (1968). Where *W* is a measure of distortion, *Cd* is a cross section property related to warping, κ is a measure of the deformational stiffness of a unit length of the box cell, ρ is the applied generalized distortional load per unit length, *E* is the Young's modulus of the box girder (Wright, 1968).

2.2 Contrasts between Saint Venant and Vlasov Torsions

When a member is subjected to opposite torques at its end nodes, there is a stress state in which only tangential stresses appear over the faces of the cross section: the free warping, (Feodosiev, 1972), also called Saint Venant's uniform torsion. Each cross section at ends is a free surface. Member longitudinal fibers are not restricted to elongate or contract as shown in Figure 8, and shear stresses are generated as in Figure 14.

Figure 8. Free Warping or Uniform Torsion

Conversely, in the case of restrained warping, at least one of the end planes of the element is not free to warp⁵ (Vlasov, 1961). The longitudinal fibers do elongate while the boundary restraints prevent the section rotation; thus normal and shear stresses appear as shown in Figure 9 (Rhodes, 1987), Figure 10 and Figure 15 (Hoogenboom, 2005).

St. Venant theory could be applied both to uniform and non uniform torsion, since the cross sections are free to deform out of its plane during torsion, a phenomenon referred to as the free warping of the cross section, which is a crucial point considering the later development of the general torsion theory according to Gjelsvik (1981).

⁵ It is understood that it will suffice that any cross section, not necessarily the end planes, is not free to warp. i.e., a beam with two free ends with an intermediate fork subjected to a concentrated torque at any point suffers warping. This problem could be modeled as a two span beam.

Figure 9. Warped Cantilevered Beam with Torque at Far End

Figure 10. Shear and Axial Stresses in Cantilevered Beam under a Far- End Torque

2.3 Definition of Shear Center

The first shear center sound study is attributed to Maillart. The shear center axis is a line parallel to the beam generator (Figure 11). When the external transverse load passes through the shear center, pure transverse bending is produced. That is, a bending

deformation for which the cross sections will remain plane and only suffer transverse vertical or lateral displacements as it is shown in right side of Figure 12.

Figure 11. Generator Definition for Vlasov

If the resultant transverse load does not pass through the shear center, the beam will suffer restrained warping due to the presence of cross section restraints or changes in the torsional loading. Balancing stresses of flexural torsion (Figure 10) determined by the law of sectorial areas will materialize in the bar cross sections in addition to the pure bending stresses as shown in Figure 12 from Lundquist (1937).

As a rule of thumb, it is useful to know that: First, the shear center is located in the symmetry axis in symmetric cross-sections. Second, the centroid and shear center coincide in double symmetric cross-sections. Third, the shear center lies in the axis of symmetry but not necessarily coincides with the cross-section centroid in singly symmetric cross-sections (AISC-DG 9, 1997). Fourth, the centroid and shear center coincide in profiles composed of plate elements whose centerlines intersect at a common point such as structural T or L (Heins, 1963).

Figure 12. Bending and Bending with Torsion Responses

2.4 Reclassification of Structural Elements as per TWB-Theory

Before Vlasov, traditional structural engineering classified bodies into three groups: First, massive bodies with three similar dimensions. Second, plates and shells whose thickness is small compared with the other two sharing the same order of magnitude. Third, beam-columns with two dimensions of the same order of magnitude, which are small compared with the third dimension or length. Vlasov introduced a new fourth class, thin-walled bars (TWBs) having the shape of long prismatic shells and a thickness much smaller than a representative dimension of the length of its cross section contour. In addition, thin-walled bars are subdivided according to whether their cross section contours are open or closed.

TWBs have cross-sections comprised by single long shells or combination of plates with proportions that satisfy Equation (8). The component plates of these shells are rigidly jointed along their contact lines; so that, no plate is free to move with respect to its neighbor at any point of the joint.

According to Vlasov (1961), if δ is the shell thickness, d is any other characteristic dimension of the cross-section (its width or height) and L, its length, the proportions must satisfy:

$$\frac{d}{L} \le 0.10 \dots \lor / \land \dots \frac{\delta}{L} \le 0.10 \tag{8}$$

However, this somewhat arbitrary but reasonable standard is not a rule of thumb and could be misleading. Particular conditions like loading and mechanic characteristics should be more carefully analyzed (Vlasov, 1961).

2.5 Evolution of Approaches to the Restrained Warping Problem

Same rudiments of restrained warping were identified even before Timoshenko (1934), Wagner (1929), Goodier (1942), or Vlasov (1961.) The Euler-Bernoulli hypothesis stating that plane cross sections remain plane before and after bending was known not to be always accurate. The restrained warping in bars was already noticed by scientists like Young, who lived between 1773- 1829, the early stages of the primitive restrained warping theory.

Young delivered an approach for the twist of a cylindrical bar of radius R with a rectangular element *abcd* on its surface at a distance r of the bar axis (Figure 13). After twisting *bc* with respect to *ad* for a unit angle θ ' (angle of twist per unit length ab = cd) around the bar axis, the parallelepiped ab_1c_1d is created. The shearing strains γ in *ab* and *cd* are $r\theta$ '; thus their corresponding shearing stresses $\tau = Gr\theta$ ' produce a torque around the bar axis expressed in Equation (9). However, if the unit distance *ab* (between the each cross section segment *ad* and *bc*) is not allowed to shorten, the fiber *ab* experiences a unit axial tensile strain equal to $\varepsilon = [(1 + r^2 \theta'^2)^{1/2} - 1] \approx \frac{1}{2} (r^2 \theta'^2)$ that is, a higher order small magnitude. From Timoshenko (1953) with notation adjusted.

Figure 13. Young's Approach

The generated tensile stresses $Er^2\theta'^2/2$ have a tangential component that produces an additional torque about the bar axis that, applying minor deformation theory, is *atan* $(r\theta'/1) \sim asin r\theta' \sim r\theta'$; thus the expression in Equation (10) is shaped. Young found that the total expression for torque consists of two terms: One proportional to the angle of twist per unit length θ' corresponding to

$$T_1 = \int_0^R Gr\theta' \cdot r \cdot 2\pi r dr = \frac{\pi}{2} R^4 G\theta' = GJ\theta', \qquad (9)$$

and another proportional to $(\theta')^3$ multiplied by a constant expressed in length⁶ related to the fact that axial elongation was prevented or restrained

$$T_{2} = \frac{1}{2} \int_{0}^{R} Er^{2} \theta'^{2} \cdot r \theta' \cdot 2\pi r^{2} dr = \frac{1}{6} \pi R^{6} \theta'^{3} E , \qquad (10)$$

www.manaraa.com

where the axial stress projection in the transversal direction T_1 is now known as the circulatory or Saint Venant torsion and T_2 is the torsion produced by the longitudinal stresses preventing changes of distances between cross sections, now known as Vlasov torsion. In 1939, Biot probed that Young method provides the correct answer for circular shafts according to Timoshenko (1953).

In 1853, Saint Venant presented the first sound analytical study of free warping before the French Academy Committee solving the torsion problem of unrestrained cross sections for a variety of prismatic bars, including the elliptic shaft (Timoshenko, 1953). Free warping theory created a pathway for the restrained warping theory development.

At the end of the XIX century Bredt formulated his equations on torsion, one of them named by August Föppol the first Bredt equation. Bredt also proposed a 2nd equation for thin-walled hollow sections with constant thickness.

The work of Bredt in 1896 on tubes and the membrane analogy further developed by Prandtl in 1903 made it possible to apply the St. Venant torsion theory to the thinwalled engineering shapes of those times (Gjelsvik, 1981).

Figure 14. Shear Flux in Saint Venant Torsion

The early stages of the 1st order modern torsion theory for thin-walled bars with open profiles dates back to 1905-06, when Timoshenko published an analysis for Isection bars finding a previously unpredicted torsional resistance different from St. Venant's. Goodier also developed separately general theories on torsion at Cornell University (Ojalvo, 1990, and Gjelsvik, 1981).

The general torsion equation was first deduced for I beams of bisymmetrical cross section and the shear center was already discussed by Timoshenko in the Bulletin of the Institute of Engineers of Ways of Communications, St. Petersburg in 1913 (Pettersson, 1955, Timoshenko and Goodier, 1951). However, R. Maillart is credited with the finding of the shear center. In 1921⁶, Maillart published a work on a cross section point he had found through which the shear must pass to avoid the cross section twisting. He also provided the method to locate this point in open profiles (Ojalvo, 1990, and Gjelsvik, 1981).

Wagner (1929) presented the general torsion differential equation of thin-walled bars with open profiles with arbitrary shapes approaching the issue of combined bending and twisting⁷ that influenced subsequent works including Vlasov's. Ojalvo (1981, 1982 and 1990) has criticized the application of Wagner's multifilament model to buckling studies.

Ojalvo considers this model inconsistent with the single filament model used in current general torsion theory; therefore, the Wagner hypothesis would be unnecessary for a general theory of rods. See also Falgoust (2004).

⁷ Referring to restrained warping, the translator of the N .A. C. A. Technical Memorandum No. 807 S. Reiss used either combined bending and twisting or bending accompanying the torsion.

⁶ Ojalvo, 1990, mistakenly states that it was in 1924, but both Timoshenko, 1953, and Gvelski, 1981, state that it was in 1921

In addition to his previous studies in TWB, Timoshenko (1945) analyzed the bending of thin-walled members of open cross section demonstrating the identity of shear center and the center of twist by using Maxwell's reciprocal theorem.

In the 1930s, Vlasov (1961) developed the general theory of thin-walled bars, from his earlier engineering theory on orthotropic cylindrical and prismatic shells. This work is credited as the seminal contribution to the 1st order general torsion theory that put under the scope the restrained warping phenomenon. Vlasov's work was compiled in a book and first published in Russian, Moscow, 1940 (Timoshenko, 1953).

In order to solve problems of multi-span beams under mixed torsion, Pettersson (1955) advanced a wide-ranging of torsion cases to be solved by means of the Hardy Cross method of successive approximations to find the bending moments acting on the flanges of I-beams, which later was named as bimoment by Vlasov (1961). Possibly due to the year of publication, he did not mention either Vlasov or the moment-bimoment analogy. On the other hand, Pettersson did acknowledge the contributions of Wagner (1929) on the governing differential equation of the general torsion theory and the compilation of solutions of torsional fundamental cases by Bornscheuer in 1953.

In a more detailed analysis, Dabrowski (1960) found that few essential terms were missing in Vlasov's equations, which could have conducted to errors. His work on Curved Thin-Walled Girders published in 1968 is frequently quoted by many torsion theorists and practitioners as Heins (1975).

Lighfoot (1961) and Gere (1963) used a comprehensive approach of the moment distribution method to undertake the problem of beam-columns under mixed axial and transverse loads. Stiffness coefficients and carry over factors for uniform beams axially

loaded in compression or tension and with their far end fixed or hinged can be found in these works, as well as influence lines for fixed end moments.

Heins (1963) and Seaburg prepared a manual to be used as design data for the Bethlehem Steel Corporation. This manual provides charts of torsional function curves, tables of torsional properties, case charts listings for various torsional loading and end conditions, case charts of torsional function curves with examples on general torsion, etc. All this material has been widely used by practitioners and even assimilated for other publications as the AISC-DG-9 by the very Seaburg (1997) and Charles J. Carter.

Wright (1968) with his BEF and Hsu (1995) with his EBEF provided a rational approach to box girder design. Box girders are thin walled beams with closed cross sections, and even that they are prone to suffer restrained warping; their governing differential equation is different from that of thin walled beams with open cross sections.

Boothby (1984) postulated the Bending Moment-Bimoment Analogy or Bending-Warping Analogy; that is, a bimoment distribution method for multi-span bars analogous to classical moment distribution methods of flexural analysis. He neither mentioned Vlasov's beam-column analogy or the book by Vlasov (1961).

Figure 15. Bimoment and Related Stresses

Medwadowski (1985) states, quoting Bleich (1952), that "...the governing differential equation" of the beam-column "is identical to the equation governing the problem of beams in axial tension and bending." Medwadowski (1985) redistributed bimoments in multi-span beams by using beam-column formulations proper of classical moment distribution methods similar to the ones developed by Lightfoot (1961) and Gere (1963). In fact, Åkesson (1987) discussed on the paper by Medwadowski that the real beam in mixed torsion rather be represented by an analog beam-column in mixed bending and tension for the sake of clarity, accuracy and efficacy.

2.6 Some Features Introduced by the Restrained Warping Theory

It has been discussed that thin-walled members with open cross sections are prone to warp. A restrained I-beam under torsion undergoes opposite lateral curvatures with balanced opposite lateral shears and moments (Figure 10). A system of generalized forces statically equivalent to zero, coined by Vlasov as bimoment B, is developed. It is equal to the flexural moment around the minor axis in one flange times the separation between flanges. As a result, warping axial strains and stresses are developed along the member.

The Vlasov hypotheses of general torsion 1^{st} order theory are: First, the cross section contour *s* does not bend or elongate; then, it does not suffer changes in curvature as expressed in Equation (11), or changes in length as expressed in Equation (12), thus, the middle line projection of the thin-walled beam in the cross section surface *xOy* does not change (See Figure 16(a)). And second, the middle surface of the thin-walled bar does not suffer shear deformations as denoted in Equation (13) and Figure 16(b).

$$\frac{1}{\rho_1} - \frac{1}{\rho} = 0, \qquad (11)$$

$$\frac{u_r}{\rho} + \frac{\partial u_s}{\partial s} = 0; \qquad (12)$$

$$\gamma_1 + \gamma_2 \approx 0. \tag{13}$$

(12)

Figure 16. Differential Element in a Thin-Walled Beam

Equations (11) and (13) explain the cross section deformation out of its plane. The cross sections after the deformations will not remain plane but will obey the rule of sectorial areas according to Rekach (1978).

One of the consequences of this phenomenon is that the flanges of a thin-walled beam subjected to a centered axial tensile force P applied eccentrically as it is shown in Figure 17 would deform independently from one another. And each transverse lateral moment acting over each flange would spread over the entire length of the beam. The Saint Venant's principle does not hold true in this case (Feodosiev, 1972).

Figure 17 from Chaudhary (1982) illustrates a way in which the warping function could manifest; the example of an axial centered resultant force producing bimoments will be presented. If b and d are the section width and depth, respectively, Figure 17(e)

shows equal and opposite lateral bending moments Nb/4 acting at each flange producing opposite lateral curvatures in each flange, which are statically equivalent to zero. The product of each opposite bending moment times their distance is called bimoment Nbd/4.

Figure 17. Centered Axial Load Producing Restrained Warping

According to Vlasov (1961), the same result could have been obtained by multiplying the axial force by the warping function $(-N) \cdot (-bd/4) = Nbd/4$. The summation of forces is statically equivalent to a centered axial force N plus a bending moment Nd/2 around mayor axis plus a bending moment Nb/2 around minor axis, plus

two opposite and equal moments producing opposite lateral curvatures in the flanges (Chaudbary, 1982).

Figure 18. Definition of Warping Function

2.7 The Beam-Column Analogy

In Chapter II, Section 9 of his book, Vlasov (1961) restated the impeccable analogy between the three-term-differential-equation of 2^{nd} order analysis of transversely and axially loaded bar and the differential equation of 1^{st} order analysis of a beam under mixed St. Venant and Vlasov torsion.

Boothby (1984) produced a work on the application of the moment distribution method to torsional analysis of multi-span TWB with open cross sections. He renamed the bimoment as warping moment: The kind of warping that produces bending moment.

Medwadowski (1985) also resorted to the moment distribution method for the torsional analysis of multi-span TWB with open cross sections. His equations are presented in matrix form, and his transfer matrix helps to express the deformed configuration of each span of the beam once the MDM has converged.

Both Boothby (1984) and Medwadowski (1985) prepared separately formulas and tables with stiffness, carry over factors, fixed-end bimoments for various loading and boundary conditions based on the formulas of mixed torsion. Medwadowski (1985) also presented the analytic stiffness matrix for the beam under mixed torsion that will be used in this paper to recommend a size of the finite element to ne used in the software.

Boothby (1984) only made references to works on combined bending and torsion without even including Vlasov's. Conversely, Medwadowski (1985) made a number of references to seminal works on beam-column and on moment distribution methods. Boothby (1984), for example, stated that he had to compute the fixed moments on a beam under a concentrated load by dividing the beam at the point of load application into two parts, as a result he solves simultaneously 4 equations with 4 unknowns for each span; while both Lightfoot (1961) and Gere (1963) had already solved the problem trough more straightforward methods for a beam-column under mixed tension and transverse load.

Akesson (1987) stated that, works on the moment distribution method to torsional analysis of multi-span TWB with open cross sections were advanced by others including Pettersson (1955). He proposes to model and solve an analogue beam-column in mixed bending and tension. And Deschapelles (1987) acknowledged Medwadowski's effort to approach the statical redundancy in thin-walled bars under restrained warping and advised to better follow the philosophy of the finite element method.

2.7.1 The Beam-Column Differential Equation

If an infinitely small element bounded by two cross sections a distance dz apart is cut out of the BC, the equilibrium of moments leads to the Equation (14) from Hetényi (1961) illustrated in Figure 19; where Q_v is the vertical shearing force, as shown in

Figure 19. The normal shear Q_n acting in the plane of the section normal to the deflection line can also be obtained using Figure 19b with the results of Equations (15) and (16), where it could be noticed that the rate of change of curvature is almost exclusively responsible for the normal shear.

$$(M+dM) - M + Ndy - Q_{\nu}dz = 0 \Longrightarrow \frac{dM}{dz} + N\frac{dy}{dz} - Q_{\nu} = 0;$$
(14)

$$Q_n = Q_v \cos\theta - N\sin\theta, \tag{15}$$

$$Q_n = \cos\theta(Q_v - N\frac{\sin\theta}{\cos\theta}) = \cos\theta(Q_v - N\tan\theta) \Longrightarrow$$

$$Q_n = \cos\theta(Q_v - N\frac{dy}{dz}) = \cos\theta\frac{dM}{dz} \approx \frac{dM}{dz}, \forall\theta \ll 1$$
(16)

Figure 19. Beam Column under Mixed Axial and Transverse Loading

In the following derivations Q_v from Equation (16) will be used. Replacing $M = -E \cdot I \cdot y''$ (bottom fibers are in positive location and under a tensile positive stress σ_y = $\varepsilon \cdot y$ combined with an upwardly negative curvature). Then he differentiates with respect to the axial coordinate, making $Q_v' = ky$, thus obtaining the differential equation of the elastic line of a straight bar under mixed axial and transverse loading:

$$+EI\frac{d^{4}y}{dz^{4}} - N \cdot \frac{d^{2}y}{dz^{2}} = -ky + q \Longrightarrow$$

$$EI\frac{d^{3}y}{dz^{3}} - N\frac{dy}{dz} = Q_{v} \Leftrightarrow ky \land q = 0,$$
(17)

where *E* and *I* are the modulus of elasticity and the cross section inertia of the member, and *k* is the soil modulus. The 2nd of Equations (17) corresponds to the integration of the first one with both the modulus of the foundation *k* and the uniformly distributed load *q* equal to 0. Figure 20 illustrates a different convention for a BC with longitudinal axis along axis *z*, and where *ky* and *q(z)* are also replaced by a unique k(y,z).

$$Q_{\nu} = N \frac{dy}{dz} - EI \frac{d^3 y}{dz^3}.$$
 (18)

Figure 20. Another BC Sign Convention with Similar Results

2.7.2 Differential Equation of a Torsional TWB

The governing differential equation of a thin-walled bar under restrained warping has any of the forms shown in Equations (19), where z is considered the longitudinal axis, E is the modulus of elasticity of the material, G is the shear modulus of elasticity, C_w is the cross section warping constant, J is the Saint Venant torsional constant, θ is the cross

section twist angle, *t* is a uniformly distributed torque, t_j is the highest applied torque at right support⁸ in the case of a linearly varying torque, and *T* is the applied torque in the cross section under study. See Ugural (1987) Heins (1963) and Figure 26 from the AISC-Design Guide 9, 1997.

$$T = G \cdot J \frac{d\phi}{dz} - EC_{W} \cdot \frac{d^{3}\phi}{dz^{3}},$$

$$E \cdot C_{W} \frac{d^{4}\phi}{dz^{4}} - G \cdot J \frac{d^{2}\phi}{dz^{2}} = t \Leftrightarrow \frac{dT}{dz} = -t$$

$$EC_{W} \frac{d^{4}\phi}{dz^{4}} - G \cdot J \frac{d^{2}\phi}{dz^{2}} = t_{j} \frac{x}{l} \Leftrightarrow \frac{dT}{dz} = t_{j} \frac{x}{l}$$
(19)

2.7.3 The Analogue Beam-Column

The analogue beam-column is a deformed straight bar vertically loaded and pulled by a horizontal force GJ as illustrated in Figure 21, Figure 22, Figure 23, which obeys Equations (19). Its longitudinal and transverse loadings are not tangent and normal to the elastic line respectively: they are measured in their original directions before the bar is deformed.

That is why the BC in Figure 22 remains in equilibrium. When the beam-column Equation (16) is formulated with forces acting normally and along the deformed elastic line, the analogy with the TWB is lost as it could be seen by comparing Equations (19) On the other hand, Equations (19) governing open TWB, are perfectly analogue to Equations (17) governing BC. In this sense, when using the small deflection theory in the BC straight bar, care should be taken so that the axial and transverse loads remain in their original directions before and after bending.

⁸ The AISC uses *t* without subscript.

Figure 21. Analogue Model in Deformed Bar

Figure 22. BC Model in Equilibrium

It is important to clarify statements by Åkesson (1987): "For a real beam in pure St. Venant torsion ($E \cdot Cw = 0$), the analogue beam-column degenerates into a transversely loaded cable stretched by a force GJ" (symbols have been adapted to those in AISC-DG-9). This statement should be understood under the light of Åkesson's model shown in

Figure 23 and never interpreted too literally as in Figure 24. Where it could be noticed that the concurring longitudinal forces $G \cdot J$ are incapable to provide opposition to the couple of forces formed by the transverse loads Ts and their arm 2L. Because this transverse loads happen to be applied at the end nodes of the beam, and do not deform according to a commonly transversely loaded cable stretched by a tensional force.

Figure 23. Equilibrium in Åkesson's Model

Figure 24. Incorrect Overly Literal Interpretation of Akesson's Model

2.7.4 Boundary Conditions and Equivalence of Symbols

The following are equivalences between the real TWB undergoing a twist angle θ

and the BC undergoing a transverse displacement *y* (Table 3 and Table 4):

Beam in mixed uniform and non-	Beam in mixed transverse and axial			
uniform torsion, TWB	loading, BC			
Angle of twist or torque angle = θ	Transverse displacement = y			
$\theta \neq 0$, some torsion rotation	y ≠ 0, some transverse displacement			
$\theta' \neq 0$, no warping restraint	y' ≠ 0, slope, no fixed end			
$\theta'' \neq 0$, some bimoment	y" ≠ 0, some bending			

Table 3. Analogue Components between a TWB and a BC

(continue)					
$Cw = Iww = \Gamma$. Warping constant Principal 2 nd order moment of area	I = moment of inertia				
using sectorial area coordinates = $\int \frac{1}{10000000000000000000000000000000000$	$\int r^2 d\mathbf{A} = ir^4$				
Jw 'uA, III	Jy uA, III				
$E \cdot Cw =$ Warping stiffness, kip- in ⁴	$E \cdot I = flexural stiffness, kip- in^2$				
$G \cdot J = St$. Venant torsion stiffness, kip-	N = tensile axial load in original				
in²	coordinates, kip				
θ = Torsion twist at a generic section $\theta'' = 2^{nd}$ derivative \rightarrow Bimoment B = -E·Cw· θ''	y = Transverse displacement at a section y" = 2^{nd} derivative \rightarrow bending moment M = -E·I·y", or y" = -M/E·I				
$\theta = 0$, no torsional rotation (clamped	y = 0, no transverse displacement (pinned				
end or fork)	end or roller, fixed end)				
$\theta' = 0$, no slope, warping restraint	y' = 0, no slope, flexural restraint (fixed				
(clamped end)	end, symmetry)				
$\theta'' = 0$, no torsional curvature, $B = 0$,	y'' = 0, no flexural curvature, $M = 0$ (no end				
(no end moment, pinned or free)	moment, pinned end, roller)				
Warping (lateral bending) axial stresses:	Vertical bending axial stresses:				
$\sigma_{\rm W} = - E \cdot w \theta$ "	$\sigma_f = - E \cdot y \cdot y''$				

Table 4. Torsional Conditions in TWB from AISC-DG 9

Physical	End	Mathematical		
No rotation	Fixed (clamped)or pinned (fork)	$\theta = 0$		
Cross-section cannot warp	Fixed (clamped) end	$\theta' = 0$		
Cross section warps freely	Pinned or free	θ " = 0		

2.8 The High Degree 9-DOF-Bar Element

The 9-DOF-BE is a beam-column element composed by a 3DOF rod element plus a 6-DOF beam-column element. The 3DOFs of the rod element operate in the field of axial displacements uncoupled with the transverse displacement and its derivatives without taking care of the 2^{nd} order effect of the axial load. The 3DOF rod element has a quadratic expansion with one axial DOF at each end node plus a dimensionless DOF, the

q ₁	,^, q₂ q	⁴}≻ L /2	y, v $q_5 \land \land q_6 \land q_7$ $u \qquad q_8 \land q_7$ x, u q_9
Non Nodal DOF	Definition	Meaning	Corresponding Distributed Load
q_4	$\int u \cdot dx / L$	Average longitudinal displacement	Longitudinal Uniform
q_5	$\int v \cdot dx / L$	Average transverse displacement	Transverse Uniform
q_6	$\int v \cdot x \cdot dx / L$	First moment of transverse displacement s	Transverse Lineal

average of axial displacements. The 6DOF beam-column element operates in the uncoupled field of transverse displacements and will be described with more detail.

Figure 25. The 9DOF Frame Element with its Non-Nodal DOF

In order to avoid the presence of the element length L in the expressions of the entire matrix entries, normalized-dimensionless degrees of freedom divided by powers of the length were used as it could be seen in Table 5 and Figure 25.

Local axes are located at member midspan, A and I are the cross section area and inertia respectively, and *Ce* is a common dimensionless factor stated in Equation (20). To avoid matrix singularity, a value different from zero, i.e. 1, must be assigned to the

cross section area to make possible the matrix inversion when running BMTORSWP. Table 6 shows one of the 9DOF components, the 6DOF stiffness matrix related to transverse displacement and derivatives.

DOFs	Definitions							
1 and 7	Axial displacements at each end divided by length, L							
4	Average, non nodal, axial displacements divided by length, L							
2 and 8	Transverse displacements at each end divided by L							
3 and 7	Rotational displacement at each end							
5	Average, non nodal, transverse displacement, divided by L							
6	Average, non nodal, first moment of transverse displacement,							
	divided by L^2							

 Table 5. All the DOFs' Definitions in the 9DOF-BE

	(2·C _{.e}	0	0	$-3 \cdot C_{.e}$	0	0	C _{.e}	0	0)
$K_{.e9s} := \frac{4 \cdot E \cdot I}{L^3}.$	0	300	30	0	-90	2520	0	-210	15
	0	30	4	0	-15	210	0	-15	1
	$-3 \cdot C_{.e}$	0	0	6·C _{.e}	0	0	$-3 \cdot C_{.e}$	0	0
	0	-90	-15	0	180	0	0	-90	15
	0	2520	210	0	0	25200	0	-2520	210
	C _{.e}	0	0	$-3 \cdot C_{.e}$	0	0	$2 \cdot C_{.e}$	0	0
	0	-210	-15	0	-90	-2520	0	300	-30
	0	15	1	0	15	210	0	-30	4)

Table 6. The 9-DOF-BE Elastic Stiffness Matrix

$$C_e = \frac{A}{2I}L^2 \therefore if + A = 1 \Longrightarrow C_e = \frac{1}{2I}L^2$$
(20)

2.8.1 Expediency and Importance of the Non Nodal DOF

Nodal degrees of freedom are precise points or directions at, along or around which only applied concentrated generalized loads could be accommodated. Conversely,

non nodal DOFs could accommodate actions operating on continuously distributed domains, i.e. complex geometric parameters other than localized directions.

Since a distributed load acts over a disperse domain in the element, it can be related to a dispersed displacement measured over the same domain. Non nodal degrees of freedom are "distributed directions" that could be defined by integrations or averages of geometric parameters (consistently and carefully chosen to avoid matrix singularity) over the element domain. Non nodal degrees of freedom cover the action of distributed loads, just as "concentrated directions or coordinates" are required to ensure continuity of the deformed configuration at the nodes, providing accommodation for complex loading cases without entailing to find equivalent nodal loads.

Deschapelles (2002) formulated a detailed description of a refined beam element with five degrees of freedom, one of them was the first non-nodal degree of freedom explicitly described in a finite element publication. Nevertheless, this type of degree of freedom had been used by him for quite a while. Deschapelles (1987) had shown before an explicit stiffness matrix containing non nodal DOF and making a reference to the development of his 12-DOF frame-shear element in Deschapelles (1978, 1984).

In the case of the 6DOF element used by BMTORSWP, this ground-breaking and handy non nodal DOF was able to capture entirely the uniformly distributed load in its corresponding consistent load vector. Thus, no loads components were projected to the other DOF. Moreover, the stiffness, and geometric matrixes were successfully developed, explicitly formulated and applied to a successful 2nd order analysis, and a soil contribution matrix was also provided for the solution of a wide range of EBEF problems. In fact, after a research spanning almost 2 years without the knowledge,

involvement or input of Deschapelles, a categorical statement can be made that no other reference to non nodal DOFs have been advanced in the literature of finite elements.

2.8.2 Adequacy of the 6-DOFs for the Transverse Displacement

The 6-DOF-BE (which is a component of the 9-DOF-BE) corresponds to a 5^{th} order polynomial acting in the field of transverse displacement *v*. The geometric and soil matrix are developed entirely in the field of transverse displacements, as well as the flexural elastic matrix. This element has a 5^{th} order expansion with two nodal degrees of freedom at each end node plus two dimensionless degrees of freedom that symbolically are situated at midspan of each finite element.

The transverse displacement v of the beam-column is analogous to the angle of twist of a TWB with open cross section. The real open TWB under a linearly varying torque (Figure 26) undergoes a deformed rotational configuration governed by a 5th degree polynomial. Therefore, the beam-column should have a field of transverse displacements governed by an equal or higher-than a 5th degree polynomial.

The beam-column field of transverse displacements is ruled by a 5th degree polynomial. Thus, the 6DOF beam-column elastic line, which is a component of the 9DOF-BE can perfectly represent both a uniform and a linearly varying transverse load whose bending moments will be described at least by a 2^{nd} and a 3^{rd} degree polynomials respectively. On the other hand, the elastic lines will be described at least by a 4^{th} and a 5^{th} degree polynomials, respectively.

In fact, fields of transverse displacement containing powers lower than five cannot form the basis of a BC that provides a solution for general torsion problems. In addition, three derivatives are required to be produced in the output for design purposes.

Because, restrained warping shearing stresses depend on the angle of twist third derivative with respect to the axial coordinate, and warping normal stresses depend on the second derivative. The first derivative defines the free warping shearing stresses.

It is pertinent to remark that this high order finite element can also accommodate in the corresponding non nodal load consistent vector shown in Equation (27) and Equation (28) all the torsional loading cases requested by the code just by using one algorithm. This additional feature makes the software application even more trustful.

2.8.3 Field of Transverse Displacements of the 6-DOF BE

The generic transversal field of displacements $\{g\}$ at an arbitrary point along the 6-DOF BE is expressed with a 5th order polynomial in Equation (21). Where its variable of position ξ has been normalized, and it's α coefficients are also called generalized

displacements. The generic displacement could also be expressed as a function of the Shape Function [N] shown in Equation (22) in a one column matrix version, as explained below. Identifying x instead of z as the longitudinal axis, the corresponding DOF are: First, the v(x(ξ))/L value for ξ = -1. Second, the v(x(ξ)),x value for ξ = -1. Third, the non-nodal integral ($\int v(x(\xi)) dx$)/L². Fourth, the non-nodal integral ($\int v(x(\xi)) dx$)/L³. Fifth, the v(x(ξ))/L value for ξ = +1. Sixth, the v(x(ξ)),x value for ξ = +1.

$$\mathbf{v}(\xi) \to \boldsymbol{\alpha}_{5} \cdot \boldsymbol{\xi}^{5} + \boldsymbol{\alpha}_{4} \cdot \boldsymbol{\xi}^{4} + \boldsymbol{\alpha}_{3} \cdot \boldsymbol{\xi}^{3} + \boldsymbol{\alpha}_{2} \cdot \boldsymbol{\xi}^{2} + \boldsymbol{\alpha}_{1} \cdot \boldsymbol{\xi} + \boldsymbol{\alpha}_{0}$$
(21)

2.8.4 Shape Function Matrix [N] of the 6-DOF BE

The generic displacement at an arbitrary point in the element $\{g\}$ is numerically defined by the shape function matrix [N] pre-multiplied by the vector of specific (reference) displacements $\{q\}$ along the DOFs. That is, $\{g\} = \{q\}$ [N]. The shape function matrix [N] contains each of the interpolation polynomials of the position coordinate. [N] is shown in Equation (22) as a column vector for convenience. Where $x = d\xi$, $dx = ad\xi$, a = L/2, and L is the member length, and x is the longitudinal coordinate.

2.8.5 Geometric Interpretation of the Shape Function [N]

The ith shape function is the equation that describes the deformed configuration of the finite element elastic line when a unit displacement in the domain of the ith degree of freedom is imposed while any other displacement along or around the rest of DOFs is prevented.

The ith shape function is the equation describing the deformed configuration of the element elastic line when a unit displacement in the domain of the ith degree of freedom is imposed when any other displacement along the rest of DOFs is prevented.

$$N := L \cdot \begin{pmatrix} \frac{21 \cdot \xi^{5}}{8} - \frac{15 \cdot \xi^{4}}{16} - 5 \cdot \xi^{3} + \frac{15 \cdot \xi^{2}}{8} + \frac{15 \cdot \xi}{8} - \frac{7}{16} \\ \frac{7 \cdot \xi^{5}}{32} - \frac{5 \cdot \xi^{4}}{32} - \frac{5 \cdot \xi^{3}}{16} + \frac{3 \cdot \xi^{2}}{16} + \frac{3 \cdot \xi}{32} - \frac{1}{32} \\ \frac{15 \cdot \xi^{4}}{8} - \frac{15 \cdot \xi^{2}}{4} + \frac{15}{8} \\ \frac{105 \cdot \xi^{5}}{4} - \frac{105 \cdot \xi^{3}}{2} + \frac{105 \cdot \xi}{4} \\ 5 \cdot \xi^{3} - \frac{15 \cdot \xi^{4}}{16} - \frac{21 \cdot \xi^{5}}{8} + \frac{15 \cdot \xi^{2}}{8} - \frac{15 \cdot \xi}{8} - \frac{7}{16} \\ \frac{7 \cdot \xi^{5}}{32} + \frac{5 \cdot \xi^{4}}{32} - \frac{5 \cdot \xi^{3}}{16} - \frac{3 \cdot \xi^{2}}{16} + \frac{3 \cdot \xi}{32} + \frac{1}{32} \end{pmatrix}$$

$$(22)$$

2.8.6 The 6-DOF BE Elastic Matrix [B]

The elastic or strain matrix [B] is the second derivative of the shape function matrix expressed here with one subscript for each derivative [N_{xx}]. Therefore, it is related to the generic curvature of the member elastic line. The elastic matrix is obtained by integrating the projections of all the infinitesimal stiffness contributions $E \cdot I \cdot ad\xi$ along the member towards the geometric parameters chosen as the member DOFs. Where $x = a\xi$, $dx = ad\xi$, a = L/2, L is the member length, and x is the longitudinal coordinate. Equation (23) states the analytical formulation of the elastic matrix, while its explicit numeric results appear in Equation (24) whose coordinate system has origin at midspan.

$$\int_{-1}^{1} N_{xx} \cdot E \cdot I \cdot N_{xx}^{T} \cdot a \, d\xi \tag{23}$$

2.8.7 The 6-DOF BE Soil Normal Stiffness Contribution Matrix

The normal modulus of the foundation or soil modulus at interface is k_0 . The 6-DOF-BE soil stiffness contribution matrix is expressed numerically in Equation (26) and was obtained by integrating Equation (25). Due to the Boussinesq effect, it is not an uncommon engineering practice to assign a unit value to the effective convex interface width *b* according to Terzaghi (1973); thus, *ko* and *k* could be numerically equal except for their units:

$$\int_{-1}^{1} N \cdot k_{o} \cdot b \cdot N^{T} \cdot a \, d\xi \tag{25}$$

$$\frac{k_{o} \cdot b \cdot L^{3}}{13860} \cdot \begin{pmatrix} 3000 & 140 & -2970 & 16800 & -30 & -25 \\ 140 & 8 & -165 & 630 & 25 & -3 \\ -2970 & -165 & 19800 & 0 & -2970 & 165 \\ 16800 & 630 & 0 & 352800 & -16800 & 630 \\ -30 & 25 & -2970 & -16800 & 3000 & -140 \\ -25 & -3 & 165 & 630 & -140 & 8 \end{pmatrix}$$
(26)

2.8.8 Load Consistent Vectors for the 6-DOF BE

The effect of infinitesimal loads applied along or around the element domain can be projected over the DOFs directions by means of the interpolation polynomials contained in the shape functions. The former operation provides a load consistent vector for any kind of distributed load. Particular distributed loads can be exclusively projected over distributed degrees of freedom. Different distributed normalized loads from a constant uniform load to one with a 5th order polynomial variation, are shown in Equation (27), where *w* is a distributed constant load expressed in lb/in (force/length), and *W* is a vector with powers of varying distributed loads.

In the case of a 6-DOF-BE, two load consistent vectors are shown in the first and second columns of the Equation (28) in matrix form one for a constant and other for a linearly varying distributed loads. It could be noticed that these 2 loadings do not project to DOFs other than the 3rd and 4th non nodal DOFs previously discussed.

This outstanding feature could very well be exploited in a number of finite element formulations. As it was already said, this fact was addressed in Deschapelles (2002). Unfortunately, in earlier papers, Deschapelles (1984, 1985, and 1987) restrained himself to just introduce finite element formulations of his own containing these suitable non nodal geometric parameters without a major discussion of their remarkable properties.

A great advantage of these non-nodal DOFs is that, in this particular problem, they could abridge in only one algorithm solutions for the 3rd and 4th order differential equations of members subjected to two different distributed loads. Concentrated loads in different locations could be handled by assigning each one node. Thus, it is not longer necessary to develop one algorithm for each version of Equation (17) for the BEF behavior or their corresponding two analog Equations (19) for the TWB behavior.

As a result of what has been previously stated, the ith column of any stiffness matrix expresses the system of forces in the coordinates of all the element degrees of freedom compatible with a unit displacement along the ith degree of freedom without any displacement in the coordinates of all other DOFs.

$$W^{T} \rightarrow \begin{pmatrix} w \\ \xi \cdot w \\ \xi^{2} \cdot w \\ \xi^{3} \cdot w \\ \xi^{4} \cdot w \\ \xi^{5} \cdot w \end{pmatrix}$$

$$(27)$$

$$\begin{pmatrix} 1 \\ 1 \\ L^{2} \cdot w \end{pmatrix} \cdot \left(\int_{-1}^{1} N \cdot W \cdot a \, d\xi \right) \rightarrow \begin{pmatrix} 0 & 0 & \frac{2}{21} & -\frac{1}{21} & \frac{8}{105} & -\frac{34}{693} \\ 0 & 0 & \frac{1}{210} & -\frac{1}{630} & \frac{1}{315} & -\frac{1}{693} \\ 1 & 0 & \frac{1}{7} & 0 & \frac{1}{21} & 0 \\ 0 & 2 & 0 & \frac{2}{3} & 0 & \frac{10}{33} \\ 0 & 0 & \frac{2}{21} & \frac{1}{21} & \frac{8}{105} & \frac{34}{693} \\ 0 & 0 & -\frac{1}{210} & -\frac{1}{630} & -\frac{1}{315} & -\frac{1}{693} \end{pmatrix}$$

$$(28)$$

2.9 Software Application

BMCOLD or BMCOLDGP, under the name of BMTORSW or BMTORSWSP is the principal software application that will be used to analyze multi-span beams under mixed torsion. BMCOLDGP will be eventually used to analyze the contributions of bending shear and normal stresses.

BMTORSWSP provides the opportunity to bypass the complexities in the restrained warping analysis. And it predicts the restrained warping behavior better than that of the beam-column on elastic foundation (due to the absence of the soil hard-to-predict-behavior) and does not demand much of a computer memory or time.

BMCOLD (by Deschapelles) is a double precision adaptation of the program ZAPEL (by Deschapelles). It is a rather small (92KB) software application for Windows (32 bits) able to undertake the analysis of a bar in mixed bending and axial loading. It

can also be used to solve problems of the general torsion theory due to the BC analogy previously discussed. BMCOLD is based upon a nine degree-of freedom-beam-column element (9-DOF-BE) including 3 non nodal smeared DOFs.

As it has been seen before, the solution of restrained warping problems under distributed non uniform torsional loads requires a field of displacements expressed in a polynomial of 5th or higher order. That is to accommodate uniform and linearly varying torsional loads prescribed in manuals including Seaburg (1997) or Heins (1963.)

BMCOLD considers a continuous soil modulus that may vary according to 3 parameters between the element nodes, and a geometric parameter from an axial force considered positive in compression. The program works with or without the elastic foundation. However, the elastic soil input data is not necessary in open TWB torsion analysis but it is necessary in box girders distortion analysis.

Input forms show x as the longitudinal axis. BMCOLD processes applied concentrated forces parallel to the longitudinal axis x, parallel to transverse axis y and applied concentrated moments around axis z. End nodes of each element are numbered NI and NJ, where number NI is smaller than number NJ; and the local x axis is defined by the direction going from node NI to node NJ (Deschapelles, 2008-2011).

Information on nodes with any type of displacement restraint must be provided for any node N, three integers are given to cover conditions along the 3 global axes. Integer +1 denotes full restraint, zero indicates no restraint at all, and -1 implies the existence of a spring; thus, the number of springs increases each time the integer -1 is entered.

The data of spring constants must be given if an input on some negative integers have been written to indicate the existence of elastic restraints; otherwise the information of prescribed non zero displacements is omitted.

For each node n, an integer is given to define the direction along which the restraint operates or the displacement is specified. Integers 1, 2 and 3 correspond to directions x (longitudinal), y (vertical transverse) and z (lateral transverse) respectively. Values of spring constants or specified displacements are also specified in the input (Deschapelles, 2008-2011).

BMCOLDG is the version of BMCOLD able to export graphic data for applications like excel. BMTORSW is a 32-bit-software application adapted from the 32-bit-software application BMCOLDG, and named after beam-torsion-warping. While, BMTORSWP is a 64-bit-software application adapted from the 64-bit-software application BMCOLDGP, and named after beam-torsion-warping Portland.

CHAPTER 3

OBJECTIVES AND METHOD

To recommend a finite element size and to undertake single-span and multi-span problems including a single-span performance experiment by using the recommended size. Some user friendly software features and conclusions and recommendations will be also provided. The process will be undertaken in an orderly, logical, systematic fashion in accordance with the AISC-DG-9. Obrébski (2005) states that the application of the finite element method to single span bar analysis and torsion analysis can produce errors up to 394% and 270% respectively.

3.1 Scope

This study is concerned with the analysis of thin-walled beams with open crosssections subjected to first order mixed torsion. A software application based on the EBEF analogy and able to handle 3 parameter soils with axial loadings will be used.

This work is not concerned with the analysis of box girders, which are thin walled beams with closed sections whose governing differential equation is analogous to that of an EBEF as pointed by Vlasov (1961), Wright and Abdel-Samad (1968) and Hsu (1995) and confirmed by tests according to Heins (1981). However, it should be also pointed that the proposed software application is able to handle box girder distortional problems.

Figure 27. Four-DOF-BEF with Origin at Left Node

3.2 Methodology

The process will be undertaken in an orderly, logical, systematic manner. First, a finite element size calibration will be performed by means of a convergence study regarding the tensile geometric parameter of the EBC—analogous to $G \cdot J$ in the TWB. Then, maximum and minimum dimensions will be recommended for the finite element.

A challenging performance experiment with an open TWB single supported at midspan under a torsional load at far end will be performed and analyzed with the software.

In this experiment, two conditions prone to errors pointed by Obrébski (2005) will be simultaneously fulfilled: This will be challenging, due to the fact that the application of the finite element method to single-span bars and torsion analysis can produce errors up to 394% and 270% respectively according to Obrébski (2005).

Examples 5.1, 5.4, 5.5 from the AISC DG 9, Boothby (1984), and Medwadowski (1985) will be reanalyzed and compared. Computations, graphics error comparisons, adjustments, printing, drawings, tables, and standards will be provided. No corrections will be imposed to the problems original data.

Comparisons will be made and conclusions and recommendations will also be provided. Finally, input forms, the Software Application Manual, and conclusions and recommendations will be provided

3.2.1 Convergence Study

The finite element used by the software is composed by two uncouple fields represented in a 3DOF rod element and a 6 DOF beam element. The 6 DOF-BC

described before is the tool that provides the algorithm to solve the 1^{st} order general torsion problem analogous to the 2^{nd} order beam column problem.

On the other hand, to study the convergence, one modus operandi could be to develop or select the exact stiffness matrix for the first order general torsion problem and compare its entries with those of the finite 6DOF-BE. For that purpose, the local axis and the DOFs must be similar in both matrixes.

Unfortunately to develop an exact 6x6-matrix with the DOFs prescribed in the 6DOF-BE will be a very difficult task due to the more complex nature of the non-nodal degrees of freedom.

Instead, the elastic and geometric finite element 6x6-matrixes will be transformed into local axis with origin at the left node of the member and then condensed to a 4x4matrix. The transformation to local axis will be made independently for both the elastic and geometric matrixes.

Therefore, Equations (24) and (26) whose local axis coordinate systems have origin at midspan have been transformed into Equations (29) and (31) whose coordinate systems have origin at left node according to Figure 27. In Equation (30) appears a common factor.

$$\lambda := L \cdot \sqrt{\frac{N}{E \cdot I}} \tag{30}$$

$$K_{g6} := \lambda^{2} \cdot \begin{pmatrix} \frac{100}{7} & \frac{23}{42} & -\frac{410}{7} & 100 & -\frac{40}{7} & \frac{5}{42} \\ \frac{23}{42} & \frac{4}{63} & -\frac{44}{21} & \frac{10}{3} & -\frac{5}{42} & -\frac{1}{126} \\ -\frac{410}{7} & -\frac{44}{21} & \frac{2080}{7} & -560 & \frac{290}{7} & -\frac{26}{21} \\ 100 & \frac{10}{3} & -560 & 1120 & -100 & \frac{10}{3} \\ -\frac{40}{7} & -\frac{5}{42} & \frac{290}{7} & -100 & \frac{100}{7} & -\frac{23}{42} \\ \frac{5}{42} & -\frac{1}{126} & -\frac{26}{21} & \frac{10}{3} & -\frac{23}{42} & \frac{4}{63} \end{pmatrix}$$

$$K_{red} \rightarrow \begin{pmatrix} 12 & 6 & -12 & 6 \\ 6 & 4 & -6 & 2 \\ -12 & -6 & 12 & -6 \\ 6 & 2 & -6 & 4 \end{pmatrix}$$

$$K_{gred} \rightarrow \begin{pmatrix} \frac{15 \cdot \lambda^{2}}{14} & \frac{\lambda^{2}}{28} & -\frac{15 \cdot \lambda^{2}}{14} & \frac{\lambda^{2}}{28} \\ \frac{\lambda^{2}}{28} & \frac{3 \cdot \lambda^{2}}{70} & -\frac{\lambda^{2}}{28} & -\frac{\lambda^{2}}{140} \\ -\frac{15 \cdot \lambda^{2}}{14} & -\frac{\lambda^{2}}{28} & \frac{15 \cdot \lambda^{2}}{14} & -\frac{\lambda^{2}}{28} \\ \frac{\lambda^{2}}{28} & -\frac{\lambda^{2}}{140} & -\frac{\lambda^{2}}{28} & \frac{3 \cdot \lambda^{2}}{70} \end{pmatrix}$$

$$(33)$$

Equations (32) and (33) present the finite element 4x4 matrixes with origin at left node were condensed independently from each other. It is important to make clear that the condensation must not be made independently for each matrix. This procedure is prone to error. In this work, instead, both the elastic and geometric 6x6 matrixes will be combined and subsequently condensed. See Equations (39) and (40).

Lighfoot (1961) and Gere (1963) developed generalized equations for 2nd order beam-columns under mixed bending and axial loading. Pettersson (1955), Chaudbary

(1982), Boothby (1984), Dvorkin (1988), and others developed generalized stiffness matrix for thin walled bars or just elastic line formulas like those in Roark (1982).

Nevertheless, the explicit version of the exact stiffness matrix corresponding to the solution of the governing differential equation of a prismatic beam under restraining warping developed by Medwadowski (1985) has been chosen in this work and it is reproduced in Equation (34). The complete entries of Medwadowski matrix are defined in Equations (35), (36), (37), and (38). Medwadowski matrix entries have been rearranged and normalized into dimensionless expressions according to the coordinate and DOF systems used for the development of the 6DOF finite element built into the software application BMTORSWP.

$$K_{DE} := \begin{pmatrix} -\delta(\lambda) & \gamma(\lambda) & \delta(\lambda) & \gamma(\lambda) \\ \gamma(\lambda) & \alpha(\lambda) & -\gamma(\lambda) & \beta(\lambda) \\ \delta(\lambda) & -\gamma(\lambda) & -\delta(\lambda) & -\gamma(\lambda) \\ \gamma(\lambda) & \beta(\lambda) & -\gamma(\lambda) & \alpha(\lambda) \end{pmatrix}$$
(34)

$$\alpha(\lambda) := \frac{\lambda \cdot sinh(\lambda) - \lambda^2 \cdot cosh(\lambda)}{2(cosh(\lambda) - 1) - \lambda \cdot sinh(\lambda)}$$
(35)

$$\beta(\lambda) := \frac{\lambda^2 - \lambda \cdot sinh(\lambda)}{2(cosh(\lambda) - 1) - \lambda \cdot sinh(\lambda)}$$
(36)

$$\gamma(\lambda) := \frac{\lambda^2 - \lambda^2 \cdot \cosh(\lambda)}{2(\cosh(\lambda) - 1) - \lambda \cdot \sinh(\lambda)}$$
(37)

$$\delta(\lambda) := \frac{\lambda^3 \cdot sinh(\lambda)}{2(cosh(\lambda) - 1) - \lambda \cdot sinh(\lambda)}$$
(38)

Equation (39) shows the first two columns and Equation (40) shows the last two columns of the condensed finite element stiffness matrix. Each entry combines both the elastic and geometric effect in a 4x4 matrix with origin at left node condensed from a 6x6

matrix with non nodal DOFs. Ten figures, each containing graphics of both the exact stiffness matrix for the thin-walled beam under mixed torsion and the finite element stiffness matrix for the analogue beam-column under mixed bending and axial load will be provided. Each chart corresponds to one of the 10 symmetric entries presented as functions of λ as defined in Equation (30). The corresponding form of λ for the analogue thin-walled beam is $\lambda = \text{Le/a} = \text{Le}\sqrt{(\text{G J/ E Cw})}$ as per the AISC definition. See Figure 28 to Figure 37.

$$\begin{pmatrix} \frac{15\lambda^{4} + 1680\lambda^{2} + 15120}{14\lambda^{2} + 1260} & \frac{\lambda^{4} + 420\lambda^{2} + 15120}{28\lambda^{2} + 2520} \\ \frac{\lambda^{4} + 420\lambda^{2} + 15120}{28\lambda^{2} + 2520} & \frac{3\lambda^{6} + 1050\lambda^{4} + 72240\lambda^{2} + 1058400}{70\lambda^{4} + 9240\lambda^{2} + 264600} \\ \frac{15\lambda^{4} + 1680\lambda^{2} + 15120}{14\lambda^{2} + 1260} & -\frac{\lambda^{4} + 420\lambda^{2} + 15120}{28\lambda^{2} + 2520} \\ \frac{\lambda^{4} + 420\lambda^{2} + 15120}{28\lambda^{2} + 2520} & \frac{210\lambda^{4} - \lambda^{6} + 19320\lambda^{2} + 1058400}{140\lambda^{4} + 18480\lambda^{2} + 529200} \\ \end{pmatrix}$$

$$\begin{pmatrix} -\frac{15\lambda^{4} + 1680\lambda^{2} + 15120}{14\lambda^{2} + 1260} & \frac{\lambda^{4} + 420\lambda^{2} + 15120}{28\lambda^{2} + 2520} \\ \frac{\lambda^{4} + 420\lambda^{2} + 15120}{14\lambda^{2} + 1260} & \frac{\lambda^{4} + 420\lambda^{2} + 15120}{28\lambda^{2} + 2520} \\ \frac{\lambda^{4} + 420\lambda^{2} + 15120}{14\lambda^{2} + 1260} & \frac{210\lambda^{4} - \lambda^{6} + 19320\lambda^{2} + 1058400}{140\lambda^{4} + 18480\lambda^{2} + 529200} \\ \frac{\lambda^{4} + 420\lambda^{2} + 15120}{14\lambda^{2} + 1260} & \frac{\lambda^{4} + 420\lambda^{2} + 15120}{28\lambda^{2} + 2520} \\ \frac{\lambda^{4} + 420\lambda^{2} + 15120}{14\lambda^{2} + 1260} & -\frac{\lambda^{4} + 420\lambda^{2} + 15120}{28\lambda^{2} + 2520} \\ \frac{\lambda^{4} + 420\lambda^{2} + 15120}{14\lambda^{2} + 1260} & -\frac{\lambda^{4} + 420\lambda^{2} + 15120}{28\lambda^{2} + 2520} \\ \frac{\lambda^{4} + 420\lambda^{2} + 15120}{14\lambda^{2} + 1260} & -\frac{\lambda^{4} + 420\lambda^{2} + 15120}{28\lambda^{2} + 2520} \\ \frac{\lambda^{4} + 420\lambda^{2} + 15120}{14\lambda^{2} + 1260} & -\frac{\lambda^{4} + 420\lambda^{2} + 15120}{28\lambda^{2} + 2520} \\ \frac{\lambda^{4} + 420\lambda^{2} + 15120}{14\lambda^{2} + 1260} & -\frac{\lambda^{4} + 420\lambda^{2} + 15120}{28\lambda^{2} + 2520} \\ \frac{\lambda^{4} + 420\lambda^{2} + 15120}{14\lambda^{2} + 1260} & -\frac{\lambda^{4} + 420\lambda^{2} + 15120}{28\lambda^{2} + 2520} \\ \frac{\lambda^{4} + 420\lambda^{2} + 15120}{14\lambda^{2} + 1260} & -\frac{\lambda^{4} + 420\lambda^{2} + 15120}{28\lambda^{2} + 2520} \\ \frac{\lambda^{4} + 420\lambda^{2} + 15120}{14\lambda^{2} + 1260} & -\frac{\lambda^{4} + 420\lambda^{2} + 15120}{28\lambda^{2} + 2520} \\ \frac{\lambda^{4} + 420\lambda^{2} + 15120}{14\lambda^{2} + 1260} & -\frac{\lambda^{4} + 420\lambda^{2} + 15120}{28\lambda^{2} + 2520} \\ \frac{\lambda^{6} + 1050\lambda^{4} + 72240\lambda^{2} + 1058400}{70\lambda^{4} + 9240\lambda^{2} + 264600} \\ \end{pmatrix}$$

A more accurate convergence study will be made with the condensed matrix shown in Equations (39) and (40), which show a matrix very different from that of Equation (33). Current recommendations on the element size are for analyses of EBEF

with BMCOLDG, are based on a convergence study related to the soil parameter made with the 4x4 matrix developed exclusively from nodal DOFs as an upper limit for accuracy purposes.

Figure 28, Figure 29, Figure 30, Figure 31, Figure 32, Figure 32, Figure 33, Figure 34, Figure 35, Figure, 36, and figure 37 each contain the curves showing one entry of the finite element stiffness matrix (continuous curve) and its corresponding entry of the exact stiffness matrix in the 4DOF-TWB (dotted curve). More entries are not needed due to the symmetry of the matrixes.

Figure 28. Entry 1-1 in the FE and Exact Stiffness Matrixes in the 4DOF-TWB

Figure 29. Entry 1-2 in the FE and Exact Stiffness Matrixes in the 4DOF-TWB

Figure 30. Entry 1-3 in the FE and Exact Stiffness Matrixes in the 4DOF-TWB

Figure 31. Entry 1-4 in the FE and Exact Stiffness Matrixes in the 4DOF-TWB

Figure 32. Entry 2-2 in the FE and Exact Stiffness Matrixes in the 4DOF-TWB

Figure 33. Entry 2-3 in the FE and Exact Stiffness Matrixes in the 4DOF-TWB

Figure 34. Entry 2-4 in the FE and Exact Stiffness Matrixes in the 4DOF-TWB

Figure 35. Entry 3-3 in the FE and Exact Stiffness Matrixes in the 4DOF-TWB

Figure 36. Entry 3-4 in the FE and Exact Stiffness Matrixes in the 4DOF-TWB

Figure 37. Entry 4-4 in the FE and Exact Stiffness Matrixes in the 4DOF-TWB

Entry Relative Errors of FE Condensed Stiffness Matrix at specific λ values will be discussed. For $\lambda = 10$, an unacceptable maximum error of 13% emerges in the stiffness entries *LB24* related to the DOFs 2 and 4 (slopes or minor angles in the BC elastic line). For a $\lambda = 6$, accuracy improves 15 times with a maximum error of 0.9%. For a $\lambda = 5$, accuracy improves 45 times with a maximum error of 0.29%. For a $\lambda = 4$, accuracy improves 200 times with a maximum error of 0.065%. For a $\lambda = 2$, the maximum error is 0.0004% and accuracy is not expected to keep improving considering other factors influencing errors. Even though, convergence can improve in theory, errors also depend on factor including but not limited to the final size of the global matrix

assembled (Wilkinson, 1963), as well as the precision of the algorithm built in the software. On the other hand, it is not a best practice to multiply the number of FEs ad infinitum. A discussion on this topic is not the theme of this work.

A preliminary advice would be to use λ (Le/a) values between 2 and 4. Thus, $2 \le \lambda = Le/a \le 4$ for the TWB. Thus, $2a \le Le \le 4a$, as it is shown in Equation (41). The minimum number of elements in a given span should be an integer Ne > (L/Le).

$1/a = \lambda$	Matrix of % Entry Errors
10	(0.1894 0.9482 0.1894 0.9482)
	0.9482 2.5332 0.9482 -13.3456
	0.1894 0.9482 0.1894 0.9482
	0.9482 -13.3456 0.9482 2.5332
6	(0.0200 0.0602 0.0200 0.0602)
	0.0602 0.2481 0.0602 -0.9083
	0.0200 0.0602 0.0200 0.0602
	0.0602 -0.9083 0.0602 0.2481
5	(0.0075 0.0191 0.0075 0.0191)
	0.0191 0.0915 0.0191 -0.2914
	0.0075 0.0191 0.0075 0.0191
	0.0191 -0.2914 0.0191 0.0915
4	(0.0021 0.0043 0.0021 0.0043)
	0.0043 0.0240 0.0043 -0.0653
	0.0021 0.0043 0.0021 0.0043
	0.0043 -0.0653 0.0043 0.0240
3	(0.00033 0.00055 0.00033 0.00055)
	0.00055 0.00363 0.00055 -0.00833
	0.00033 0.00055 0.00033 0.00055
	0.00055 -0.00833 0.00055 0.00363
2	(0.00002 0.00003 0.00002 0.00003)
	0.00003 0.0002 0.00003 -0.00039
	0.00002 0.00003 0.00002 0.00003
	0.00003 -0.00039 0.00003 0.0002
1	(0.000000 0.000000 0.000000 0.00000)
	0.000000 0.000001 0.000000 -0.000002
	0.000000 0.000000 0.000000 0.000000
	0.000000 -0.000002 0.000000 0.000001

Table 7. Relative % Entry Error in Condensed Matrix for Different λ Values

$$Le \le 2\sqrt{(EC_w/GJ)} = 2a < L/3 \tag{41}$$

$$Ne > 0.5L\sqrt{(GJ/EC_w)} = 0.5L/a > 3$$
 (42)

A similar study of the stiffness coefficients for a 4DOF-BC was made, and the comparison of the respective stiffness matrixes error-wise is shown and commented in Figure 38 and Figure 39. From the point of view of computer memory, it could be said that the 6DOF-BE increases accuracy and saves computer memory spaces.

Figure 38. Four and 6DOF FE Stiffness Matrix Convergence for BC

Figure 39. Six-DOF FE Stiffness Matrix Convergence for BC

As a sweeping statement, it could be said that the accuracy of the 6DOF beam column is 3.8 to 4 times that of the 4 DOF beam column. Only one 6DOF-BE is required to achieve the accuracy of four-4DOF-BE or five 6DOF-BE are required to achieve the accuracy of nineteen 4DOF-BE.

Therefore, one 6x6 matrix requires 18x1+3 = 21 entries in a global matrix upper triangle and four 4x4 matrixes require 7x4+3 = 31 entries in a global matrix upper triangle respectively. Similarly, five 6x6 matrixes require 18x5+3 = 93 entries in a global matrix upper triangle and nineteen 4x4 matrixes require 7x19+3 = 135 entries in a global matrix upper triangle respectively.

This difference will increase linearly as the number of required elements increases. In general the global matrix assembled with a higher degree finite element requires using less matrix entries in the memory to achieve a given accuracy; thus, the 6DOF is more convenient.

This advantage is in addition to the ones already discussed regarding the two non nodal DOFs properties, and the fact that for a solution of the mixed torsion problem a higher degree polynomial is mandatory.

3.2.2 List of Case Studies

The examples to be solved will be the following: Two parametric experiments of a bar restrained under two different restraints at midspan and subjected to a torque at right end, and example analytically solved by Ugural (1987), examples 5.1, 5.4 and 5.5 from the AISC Design Guide 9, an example from Boothby (1984), an example from Medwadowski (1985). Trials with the finite elements size recommended in the convergence study will be undertaken and mesh adjustments will be made if any.

3.2.3 Case Study One

The first case study is a parametric experiment where a TWB is cantilevered at midspan and subjected to a 1k-in torque at far end. The data is as follows L = 15 in at each side, of the support. E = 29000 ksi, $C_w = 0.01$ in⁶, GJ = 10 kip-in². The minimum element size is $2\sqrt{ECw/GJ} = 2\sqrt{290/10} \sim 11$ from Equation (41). The number of elements per span must be an integer larger than 15/11. As two elements did not work out, 3 elements were used from then on. Obrébski (2005) has commented on the difficulty presented by finite element formulations in the case of TWB and one span bars.

The cross section shown in Figure 40 is not that of the real bar in the parametric experiment. It just provides an order of magnitude for the bogus cross section torsional properties in order to make verisimilar the data handling.

Figure 40 shows the analog EBC subdivided in finite elements, Figure 41 shows an exaggerated EBC elastic line and Figure 42 shows the torque graph. More information can be found in Appendix A.

Figure 40. Model of Parametric Experiment to Test the Software

Figure 41. Elastic Line of the Beam Column Analogous to the TWB

3.2.4 Case Study Two

This second case is a parametric experiment where the TWB is not cantilevered but just restrained against rotation at midspan. The data is the same as the first experiment. The results are shown in APPENDIX B including pictures; the input model, data, and forms; output data; and charts.

Three effects detected in the parametric experiment have been corroborated in the analysis: First, there is twist at the free unloaded near end; second, the twist at far end is the largest; and third, there could be a zero external torque with restrained warping along the full first span as seen in Figure 43 and Figure 44 and Figure 47. In addition to the contents in the respective APPENDIX B, more materials illustrating this problem could be found from Error! Reference source not found. to Error! Reference source not found.

These results are crucial to reformulate any previous advice on element size, particularly in the case of single span bars. Obrébski (2005) has commented on the inconvenience of both TWB and single span bars in the case of finite element formulations.

Figure 43. Analogue EBC in 2nd Order Equilibrium

Figure 44. Zero External Torque with Restrained Warping at First Span

Figure 45. Input Data

Figure 46. EBC with 6 Elements, $\theta=0$ at Midspan, 1K-in Torque at Far End

3.2.5 Case Study Three

The case study three is a single span cantilevered TWB, L = 30 in, under torsion held rigidly ($\theta'(0) = 0$, $\theta''(L) = 0$) in left end taken from pages 206-209 of Ugural (1987.) The TWB has been assigned the same cross section properties as in Case Study # 1 to compare BMTORSWP outputs with the analytic solution. The minimum element size is $2\sqrt{ECw/GJ} = 2\sqrt{290/10} \sim 11$ from Equation (41), and the number of elements should be

and integer larger than $30/11 \sim 3$, say 6 to edit the data from the former input form. Figure 48 illustrates the analogous EBC, while Figure 49 and Figure 50 show the similarity of the finite element solution and the analytic solution of the torque diagram.

Figure 50. L=30", Cantilevered Beam under Torsion, Exact Solution

More information can be found in APPENDIX C, whose charts show the asymptotic behavior of the twist angle derivatives increases as the order of derivative increases as seen in Figure 51. This is a very suitable feature of the particular finite element upon which the software is based.

Figure 51. Twist Angle Third Derivative

3.2.6 Case Study Four

Examples 5.1 from the AISC DG-9 illustrated in Figure 52.a is solved, in which a W10x49 spans 15 ft (180 in) and supports a 15-kip factored load (10-kip service load) at midspan that acts at a 6 in eccentricity with respect to the shear center.

The stresses on the cross-section and the torsional rotation should be computed and compared with those provided by the AISC-DG9.

The ends are flexurally and torsionally pinned. The eccentric load can be resolved into a torsional moment and a load applied through the shear center as shown in Figure 52(b).

The resulting flexural and torsional loadings are illustrated in the same Figure 52. More detailed information can be found in APPENDIX D and a summary of results can be found from Figure 53 to Figure 58.

Figure 52. AISC-Design Guide 9, Example 5.1

$$\begin{split} \text{Shear stress in web (w) at the TWB support:} \\ \tau_{t_wsBmtrs} &\coloneqq G \cdot t_w \cdot \left(\theta_{sBmtrs_1} \cdot \frac{1}{in} \right) = -6.11 \cdot ksi \quad \text{From BMTORSW} \\ \tau_{t_wsAise} &\coloneqq G \cdot t_w \cdot \left(\theta_{sAise_1} \cdot \frac{1}{in} \right) = -6.16 \cdot ksi \quad \text{From AISC-DG9} \\ \text{Shear stress in flange (f) at the support (s):} \\ \tau_{t_fsBmtrs} &\coloneqq G \cdot t_f \cdot \left(\theta_{sBmtrs_1} \cdot \frac{1}{in} \right) = -10.06 \cdot ksi \quad \text{From BMTORSW} \\ \tau_{t_fsAise} &\coloneqq G \cdot t_f \cdot \left(\theta_{sAise_1} \cdot \frac{1}{in} \right) = -10.15 \cdot ksi \quad \text{From AISC-DG9} \end{split}$$

Figure 53. Shear Stress in Web and Flange at Midspan

Figure 54. Two Solutions for Total Shear Stresses

Warping Shear Stress in flange at midspan (fm):

$$\tau_{w_fmBmtrs} \coloneqq -E \cdot S_{wl'} \left(\theta_{mBmtrs_3} \cdot \frac{1}{in^3} \right) \cdot \frac{1}{t_f} = -1.28 \cdot ksi \quad \text{BMTORSW}$$

$$\tau_{w_fmAisc} \coloneqq -E \cdot S_{wl'} \left(\theta_{mAisc_3} \cdot \frac{1}{in^3} \right) \cdot \frac{1}{t_f} = -1.28 \cdot ksi \quad \text{AISC-DG9}$$
Warping Shear Stress in flange at the support (fs):

$$\tau_{w_fsBmtrs} \coloneqq -E \cdot S_{wl'} \left(\theta_{sBmtrs_3} \cdot \frac{1}{in^3} \right) \cdot \frac{1}{t_f} = -0.57 \cdot ksi \quad \text{BMTORSW}$$

$$\tau_{w_fsAisc} \coloneqq -E \cdot S_{wl'} \left(\theta_{sAisc_3} \cdot \frac{1}{in^3} \right) \cdot \frac{1}{t_f} = -0.56 \cdot ksi \quad \text{AISC-DG9}$$

$$s_{wo} \quad S_{wo} \quad S_{wo}$$

Figure 55. Shear Stress from Warping

Warping Normal Stresses at midspan due to warping

$$\sigma_{w_mBmtrs} := E \cdot W_{no} \cdot \left(\theta_{mBmtrs_{2}} \cdot \frac{1}{in^{2}}\right) = 28.53 \cdot ksi \qquad \text{BMTORSW} \qquad W_{no} \qquad W_$$

Figure 56. Normal Stresses due to Warping

Figure 57. Superposition of Normal Stresses

Location	Norm	al Stres	ses	Shear Stresses						
	σ_{iw}	σ_{ub} f_{un}		τ_{ut}	τ_{uw}	τ_{ub}	f_{uv}			
Midspan	28.53	12.36	40.89							
Flange	±28.1	±12.4	±40.4	0	-1.28	±0.640	-1.92			
Web				0		±2.45	-2.45			
Support				10.06	0.57	0.64	11.27			
Flange	0	0	0	-10.2	-0.564	±0.640	-11.4			
Web				-6.16		±2.45	-8.61			
Maximum		40, 89	±40.4			11.2	- ^{-11.4}			
BI	BMTORSWSP figures without sign, next to AISC DG9 figures									

Figure 58. Comparisons Total of Flexure and Torsion Stresses

3.2.7 Case Study Five

Examples 5.4 from the AISC DG-9 illustrated in The welded plate-girder shown in Figure 5.4a spans 25 ft (300 in.) and supports 310-kip and 420-kip factored loads (210-kip and 285-kip service loads). As illustrated in Figure 59, these concentrated loads are acting at a 3" eccentricity with respect to the shear center. Determine the stresses on the cross-section and the torsional rotation if the end conditions are assumed to be flexurally and torsionally pinned. The results and comparisons are found in Figure 60, Figure 61, and Figure 62. More detailed information can be found in APPENDIX E.

Figure 59. TWB Cross Section and Interest Points along Beam

Location		Ow .	бр	fun
Point D	flange web	-18.4	±26.6	-45.0 -45.0
Point E	flange web	0	<u> </u>	0
Maximum		2	19-20-17	<u>-45.63</u> – - 45.0

Figure 60. Discrepancy in Total Maximum Normal Stresses in Interest Points

Location		Tt 170	Tw	τь	fuv
Point D	flange web	-4.73 -4.47 -2.24	-1.11 -	± 2.37 ±12.1	- 7.95 -14.3
Point E	flange web	- 8.75 -8.75 -4.37	-0.84 -0.87 	± 2.37 ±12.1	- <mark>11.9</mark> - -12.0 -16.5
Maximum		- 4.38 -		and the second	- <u>16.51</u> - 16 .5

Figure 61. No Discrepancy in Total Maximum Shear Stresses in Interest Points

Figure 62. Discrepancies on Maximum Twist Angle and Location

3.2.8 Case Study Six

The MC18x42.7 channel illustrated in Figure 5.5(a) spans 12ft (144 in.) and supports a uniformly distributed factored load of 16 kips/ft (2.4 kips/ft service load) acting through the centroid of the channel. Determine the stresses on the cross section and the torsional rotation.

The beam ends are flexurally and torsionally fixed. The eccentric load can be resolved into a torsional moment and a load applied through the shear center according to the AISC-DG9.

The resulting flexural and torsional loadings are taken from AISC-DG9 and illustrated in Figure 64; while Figure 63 shows the input model to be used in the software.

Figure 64. Flexure and Torsion Effect

Figure 65. Shear Stress due to Pure Torsion along the Beam and Profile

τ _{wBmt} =	(0 0 0 0	1.306 0.595 0 1.306	-1.013 -0.462 -0 -1.013	0.703 0.321 0 0.703) •ksi	BMTORSW at support 0.2L 0.5L L
$\tau_{_{\mathbf{W}}} =$	0	1.303 0.599 0	-1.011 -0.465	0.702	∙ksi	AISC-DG9 at support 0.2L
	0	1.303	-1.011	0.702		0.5L L

Figure 66. Shear Stress due to Warping Torsion along the Beam and Profile

σ _{wBmt} =	21.009 0.18 -9.187 21.009	0 0 0	-9.932 -0.085 4.343 -9.932	$\begin{pmatrix} 0\\0\\0\\0 \end{pmatrix} \cdot \mathbf{ksi}$	BMTORSW at support 0.2L 0.5L L
σ _w =	20.078 0 -8.729 20.078	0 0 0	-9.491 0 4.127 -9.491	0 0 0 0	AISC-DG9 at support 0.2L 0.5L L

Figure 67. Warping Normal Stresses along the Beam and Profile

The real point where maximum angle of twist occur is not at 0.2L but at 0.204L. It can be seen in the curve made from BMTORSWP data. However, the results from the AISC DG9 are very close. The maximum service load rotation θ , at midspan with the service-load torque is 0.0123 for the AISC and 0.0130 for BMTORSWP.

f _{unBmt} =	(12.594 -0.156 -4.979 12.594	-8.416 -0.337 4.208 -8.416	-18.347 -0.422 8.551 -18.347	0 0 0 0	-ksi	BMTORSW at support 0.2L 0.5L L
f _{un} =	(11.662 -0.337 -4.522 11.662	-8.416 -0.337 4.208 -8.416	-17.907 -0.337 8.334 -17.907	0 0 0 0	ksi	AISC-DG9 at support 0.2L 0.5L L

Figure 68. Combined Normal Stresses along the Beam and Profile

0	20.1(C)	8.41(T)	11.7(C) 12.5
1	0	8.41(T)	8.41(T) -8.4
2	9.49(T)	8.41(T)	17.9(T) -18.3
3	0	0	0 <mark>0</mark> .
0	8.73(T)	4.20(C)	4.53(T)
1	0	4.20(C)	4.20(C)
2	4.13(C)	4.20(C)	8.33(C)
3	0	0	0
0	0		-
1	0	1	
2	0		-
3	0	-	
	0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3	0 20.1(C) 1 0 2 9.49(T) 3 0 0 8.73(T) 1 0 2 4.13(C) 3 0 0 0 1 0 2 0 3 0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Figure 69. Total Normal Stresses along the Beam and Profile

The maximum normal stress (tension) occurs at the support at point 2 in the flange. A discrepancy of 2.5% is noticed: 17.907 ksi vs. 18.347 ksi from DG9 and the software respectively (Figure 68). The AISC DG9 data have been recalculated to the third decimal place to be compared with BMTORSWP output calculated to the third decimal place.

$$f_{uv} = \begin{pmatrix} 0 & 1.303 & 0.218 & 3.986 \\ 2.843 & 3.442 & 3.115 & 4.34 \\ 0 & 0 & 0 & 0 \\ 0 & 1.303 & -2.24 & -2.582 \end{pmatrix} \begin{pmatrix} \text{support} \\ 0.2L \\ \text{ksi} \\ 0.5L \\ L \end{pmatrix}$$

$$AISC-DG9 \text{ at support} \\ 0.2L \\ \text{support} \\ 0.5L \\ 0.2L \\ \text{support} \\ 0.2L \\ \text{support} \\ 0.2L \\ L \\ \text{support} \\ 0.2L \\ 0.$$

Figure 70. Combined Normal Stresses along the Beam and Profile

Location	Point	τr	τw	ть	fur
Support	0	0	0	0	0
	1	0	1.30←		1.30←
	2	0	1.01←	1.23→	0.22→
	3	0	0.702↓	3.28↓	3.98↓
Midspan	0	0	0	0	0
	1	0	0	0	0
	2	0	0	0	0
	з	0	0	0	0
z/l = 0.20	0	2.84 →	0	0	2.84 → 2.923
	1	2.84 →	0.599←		3.44← 3.158
	2	2.84→	0.465←	0.740→	3.12→ 3.198
	3	2.05↓↑	0.323↓	1.98↓	4.35 4.396
Maximum		¥.			4.351 4.396

Figure 71. Summary of Total Shear along the Beam and Profile

Figure 65, Figure 65, Figure 66, Figure 67, Figure 68, Figure 69, Figure 70, and Figure 71 contain the results of isolated and combined stresses and maximum angle of twist were presented. More comments, data, graphs and charts are provided in APPENDIX F.

3.2.9 Case Study Seven

Boothby (1984) proposed the use of the moment distribution method to analyze multi-span bars under restrained warping. A three-span continuous C12x30 beam with J = 0.864 in^4 , Cw = 151 in^6 , maximum Wn = 11.7 in2, G/E = 0.4, E=29000ksi must be solved. The beam with its support conditions are shown in Figure 72. The beam was divided in half due to the physical and loading symmetries. See APPENDIX G.

Figure 72. Boothby's Bending and Torsional Support Conditions

The properties of 1/a = 0.04787/in or a = 20.9 in; thus, each finite element could span 2a to 4a. Nevertheless, the elements will be chosen smaller as shown in Figure 73. The number each of the 23elements is shown below the beam, and the node numbering is shown on top of the beam.

									24 E	1.6k-ir BC ar	n nalog	vert.	load	1	Ana	log te	ensile	e load	I GJ =	= 102	2.4 (kip	
	- F		K	node	es .	4	7 4		4					24							-		
J 1	3 5	1	9			5 1	-	9 4	1	23 2	5 4	4	29	31 .	33 3	5 3	/ -	94	1 4	34	5 4	17 4	9 G
$\Delta 1$	2	3 4	5	6 ()7	8	9	10	11	12	13	14	15	16	17	18(<u>)</u> 19	20	21	22	23	24	2
V	6@20	"=120	1		1	4@18	"=72	2"	V	3@2	1"=6	3"	V	5@2	21"=1(05"	V	6(@20"	=120	•		/
Λ			el	ement	s`			/	1			/	1			/						/	
1/	1	20"			1					2	10"						1		17	0"			1

Figure 73. Model of EBC with Finite Elements

This is due to the fact that the program is based on a 9-DOF-beam-element. Whose three non nodal DOF are assigned to a fictitious middle span node. Therefore a structure with one element will carry 2 real nodes and one fictitious node; a structure with 2 elements will carry 3 real nodes and 2 fictitious nodes and so on and so forth. Therefore, a structure with 23 elements will carry 24 real nodes and 23 fictitious nodes.

The tensile analog force is $-GJ = -0.4*0.864in^{4}*29000ksi = -10022 kip-in^{2}$. *JBW* is calculated by the formula 3(NJ-NI+1), being I and J the real nodes of any element with the maximum difference for J – I, such that I < J. That is, in our case JBW= 3(3-1+1) = 9

(See APPENDIX F). The positive direction of forces and stresses along the cross section profile are those assigned to the beam under bending shear that appears in Figure 74.

Figure 74. Stresses and Forces in Cross Section Profile

While there is a match between Boothby's and BMTORSWP charts (Figure 75 and Figure 76), it does not happen in the warping moment charts. Boothby's error on the warping moment is at the external sides of the first and last interior supports as it could be seen in Figure 77.

	Joi	Joint	t 3		
	.523	.477	C.O.=0.095	.477	.523
FEB		-363.1		+134.0	
Dist 1.	189.9	+173.2		-63.9	-70.1
C.O. 1		-6.1		+16.5	
Dist. 2	+2.9	+3.2		-7.9	-8.6
C.O. 2		-0.8		+0.3	
Dist. 3	+0.4	+0.4		0.1	-0.2
	+193.2	-193.2		+78.9	-78.9
	193.62			78.93	

Figure 75. Bimoment Results. BMTORSWP Output Shown in Red

Figure 76. Bimoment Match between BMTORSWP and Boothby's

Figure 77. Total and Warping Torque from BMTORSWP and Boothby

Regarding stresses and strains Boothby made another mistake by selecting the wrong sectorial coordinate at the flange-web corner is illustrated in Figure 78 to evaluate the warping stresses. Nevertheless, it does not affect Boothby's Stresses at Right Side of 1st Interior Support (Figure 78). Regarding shear stresses, no discrepancies were found as shown in the same figure. More materials regarding this problem with a meticulous comprehensive study of stresses along the beam axial coordinate and along the cross sectional profile coordinate s may be found in APPENDIX G.

Figure 78. BMTORSWP and Boothby's Stresses at Right Side of 1st Interior Support

3.2.10 Case Study Eight

Consider the four-span continuous crane girder shown in Figure 79. The only torsional load in span AB and is due to the horizontal forces H = 6.7 kip exerted by the wheels of the bridge at the top of the crane rail. The wheels' location causes the largest warping moments. The lateral load and the cross section of the crane girder are shown in Figure 81. The distance from the lateral force to the shear center profile is 8.365 in. The total torque at each wheel is T = 56.0 kip-in. Figure 81 shows the values of the sectorial coordinate Wni and the values of the first moment of the sectorial coordinate Sw. The St. Vt. torsion constant J is 11.11 in^4, and the sectorial moment of inertia Cw is 81,989 in^6. E = 29,000 kip/in^2, and G = 11,154 kip/ in^2 for steel. And finally, Figure 80 shows the input model to be used in BMTORSWP.

Figure 79. Continuous Crane Girder with Applied Torques

Figure 81. Section Properties and Profile Interest Points "s"

In APPENDIX H, material corresponding to the input model, input data, input forms, figures of output data with checks in notepad version, and excel processed output data and charts can be found. Charts are presented containing both partial and combined tresses along interest points of the beam and cross section profile.

Again, the asymptotic behavior of the thin-walled beam elastic line is successfully shown in the charts, which evidences the efficiency of the high order finite element used by BMTORSWP. Positive shear and axial stresses are assumed similar to those occurring at the cross section flanges and web when the beam undergoes bending.

There is a match between the form of BMTORSWP and Medwadowski charts (Figure 82). Nevertheless, Medwadowski committed a huge error in the scale of torques. He found torques 100 times larger than expected, which in terms of stresses is not acceptable at all as in can be seen in Figure 83.

The reasoning to support this statement is as follows: Given the hyperbolic nature of the functions involve in the angle of twist $\theta(z)$, each of its derivatives decreases an order of magnitude equal to the characteristic length "a". On the other hand, the ratio

between bimoment B (= - ECw θ ", ksi-in^2) and warping moment Tw (= - ECw θ "", ksiin) should be in the range of "a" (\sqrt{ECw}/GJ =138.5 in). Thus, using the Medwadowski bimoment data, the warping moment Tw is expected to be around (4000+3000) ksi-in^2 /138.50in ~ 50 k-in; as shown in the BMTORSWP chart.

Figure 83. Comparison of Torque Charts by Medwadowski and with BMTORSWP

3.2.11 Results' Interpretation

According to Saadeé (2004-2005), polynomial interpolation functions are usually used for bending while the hyperbolic functions are often used for non uniform torsion. Nevertheless, the efficacy of BMTORSWP to represent hyperbolic functions has been proven despite the fact it is based upon a finite element developed by means of polynomial interpolation functions.

On the other hand, the solutions in the AISC-DG9 by Seaburg (1997) have been found correct. They were originated in the works by Heins (1963) and Seaburg, actualized by Seaburg (1997) and Carter. Nevertheless, in the case of C shape profiles, the AISC-DG9 omits the shear stress analysis in the profile interest point at s = 1. A computer solution allows the practitioner to analyze this shear using interpolation of the value for the sectorial coordinate.

Conversely, the errors found in the works by Boothby (1984) and Medwadowski (1985) provide evidence that the solution of restrained warping problem is prone to error. Therefore, it is suitable to bring in a tool as BMTORSWP able to simplify the problems involving first order general torsion theory. In addition to the complexity that structural analysis of TWB share with 2nd order analysis of beam-columns, the calculation of TWB stresses along the cross section profile is tiresome. And BMTORSWP provides the suitable option to export the data to a spreadsheet for a more systematic handling of stress computations.

As a comment on the trustiness of the finite element upon which the software is based, it is important to state that the accuracy of the 6DOF beam column is 3.8 to 4 times that of the 4 DOF beam column. Therefore, just one 6DOF-BE is required to

achieve the accuracy of four-4DOF-BE or five 6DOF-BE are required to achieve the accuracy of nineteen 4DOF-BE. On the other hand, one 6DOF-BE matrix occupies 18x1+3 = 21 entries in a global matrix upper triangle, while four 4DOF-BE matrixes occupy 7x4+3 = 31 entries in a global matrix upper triangle respectively. Similarly, five 6DOF-BE matrixes occupy 18x5+3 = 93 entries in a global matrix upper triangle and nineteen 4DOF-BE matrixes occupy 7x19+3 = 135 entries in a global matrix upper triangle respectively.

This difference will increase linearly as the number of required elements increases. In general the global matrix assembled with a higher degree finite element requires a lesser number of matrix entries in the program memory in order to achieve a given accuracy; thus, it is more convenient. This advantage of the 6DOF-BE is in addition to the ones related to its two non nodal DOFs, and adds to the fact that for a solution of the mixed torsion problem a higher degree polynomial is mandatory.

Regarding the aforementioned errors by Boothby and Medwadowski, it is pertinent to comment that perfect coincidence was found in the bimoment diagrams. However the chart of torques by Boothby contains 2 mistakes. At left side of first interior support and right side of last interior support, warping torques of 9.2 and 3.5 respectively were not detected by Boothby with corresponding errors of 700 and 300 per cent. See Chart Total and Warping Torque from BMTORSWP and Boothby.

Nevertheless, these errors would not be critical for design purposes. It was found that stresses calculations by Boothby correspond to the right side of the first interior support, and they are correct. Nevertheless, another mistake by Boothby was noticed

regarding the cross section sectorial coordinate at the flange-web corner: A Wn2 = 6.75 in² corresponding to a C15x50 shape was used instead of 5.02 in².

Regarding the aforementioned errors by Medwadowski, a perfect coincidence was found in the bimoment diagrams. However the chart of torques by Medwadowski contains one error. He found torques 100 times larger than expected, which in terms of stresses is not acceptable at all.

The reasoning to sustain this statement is as follows: Given the hyperbolic nature of the functions involve in the angle of twist $\theta(z)$, each of its derivatives decreases an order of magnitude equal to the characteristic length "a". Therefore, the ratio between bimoment B (= – ECw θ ", ksi-in²) and warping moment Tw (= – ECw θ ", ksi-in) should be in the range of "a" ($\sqrt{ECw}/$ GJ =138.5 in). Thus, using the Medwadowski bimoment data, the warping moment Tw is expected to be around (4000+3000) ksi-in² /138.50in ~ 50 k-in; as shown in Figure 83.

CHAPTER 4

CONCLUSIONS AND RECOMMENDATIONS

It is appropriate for designers of thin-walled open cross sections frequently used in steel structures to count on straightforward and affordable tools enabling them to bypass the common difficulties related to the design of elements under restrained warping. BMTORSW or BMTORSWP fulfill very well all these requirements.

4.1 Conclusions

Considering the asymptotic character of the governing hyperbolic functions, the use of smaller finite elements may be more appropriate near restraints. An additional consideration must be taken into account to check the equilibrium of forces when distributed loads are involved. Due to the fact that the location of the smeared DOF is unknown, a more refined mesh reduces the error when it comes to arbitrarily assigning a reasonable location for the smeared DOF action during the equilibrium checks.

The accuracy of the 6DOF beam column is 3.8 to 4 times that of the 4 DOF beam column as shown in Figure 38. Therefore, it could be said that "n" 6DOF-BE matrixes require 18n+3 entries in a global matrix upper triangle which, in terms of accuracy, are equivalent to $3.8 \cdot n$ 4DOF-BE matrixes that require about 27n + 3 (7(3.8n) +3) entries in a global matrix upper triangle respectively.

Two effects detected in the parametric experiments have been corroborated in the analysis: First, there is twist and restrained warping along the unloaded span; second, the twist at the loaded end is larger than that at the unloaded end.

4.2 Recommendations

Definitely BMTORSWP is the recommended software application to handle problems of multi-span beams subjected to restrained warping. It is straightforward, versatile and powerful enough. And it has survived the test of handling single span bar under restrained warping (Obréski, 2005).

The recommended size of the finite element to be used in BMTORSWP is between 2a and 4a; where $a = \sqrt{E \cdot Cw/G \cdot J}$ according to the AISC. Nevertheless, an additional advice is to use a minimum of 3 finite elements per span to reproduce the asymptotic behavior (which accentuates as Cw gets smaller Figure 50) of the angle of twist and its derivatives. Nodes are mandatory at restraints and points of application of concentrated loads. An additional recommendation is that smaller finite elements can be used neighboring the nodes.

Inexpensive experiments like that of the bar restrained against torsion at midspan could be used to experimentally measure cross section torsional properties, and to verify the range of linear behavior of GJ. They could also be used to study large deformation behavior, and to explain behavior of moving large slim structures like trucks and catamarans when struck or impacted near midspan.

Finally, the software application is recommended to solve problems of distorted box girders. However, for a box girder solution, a study of convergence similar to the one presented in this work is recommended to be advanced. This more accurate convergence study must be made by combining the 6x6 elastic and soil matrixes related to the field of transverse displacements.

APPENDIX A

BAR CANTILEVERED AT MIDSPAN

The equivalent beam-column model, input forms, input and output notepads as well as the charts can be found in the following pages of this part of the document.

Bar Cantilevered ($\theta = 0, \theta'' = 0$) at Midspan with 1K-in Torque at far End

CMSOUT YOU ARE USING COMPUTER PROGRAM BMTORSW, DEVELOPED BY DR. BERNARDO DESCHAPELLES 0 INPUT DATA FILE NAME IS = cMs.txt 0 OUTPUT FILE NAME IS = cMsOut.txt 0 STORAGE FILE FOR POST-PROCESSING WITH EXCEL = cMsGrf.grf 0---_____ Held rigidly against rotation at midspan and subjected to a 1k-in torque at far Omodulus of elasticity of the material 29000. k/ft2 OELEM nodes inertia length distrib. load AXIAL SOIL NORMAL MODULUS,Ksf angle ft LOAD 1st END 2nd END ft.4 at i at i rad 3 0.01000 5.00 0.000 0.000 -10.00 0.0 0.0 0.000 00 1 5 0.01000 0.0 2 3 5.00 0.000 0.000 -10.000.0 0.000 00 0.000 0.000 00 3 7 0.01000 5.00 -10.00 0.000 0.0 0.0 4 9 0.01000 5.00 0.000 0.000 -10.000.0 0.0 0.000 00 0.000 00 9 11 0.01000 5.00 0.000 0.000 -10.005 0.0 0.0 0.000 13 0.01000 5.00 0.000 -10.00 0.000 00 6 11 0.0 0.0 0 INPUT DATA RELATED TO THE 1 SUPPORTS Tensile 17011 0 INPUT OF NODAL FORCES RELATED TO GLOBAL AXIS 2 113 1.00 0 FINAL SOLUTION FOUND AFTER 1 ITERATIONS Output of nodal displacements in reference to global axes displ. displ. displ. displ. displ. Ω Onode displ. displ. displ. along y along x around z along x along y around z or nonn1 or nonn2 or nonn 3 or nonn1 or nonn2 or nonn 3 1 0.0000E+00 0.0000E+00 0.0000E+00 + 2 0.0000E+00 0.0000E+00 0.0000E+00 3 0.0000E+00 0.0000E+00 0.0000E+00 + 4 0.0000E+00 0.0000E+00 0.0000E+00 + 5 0.0000E+00 0.0000E+00 0.0000E+00 + 6 0.0000E+00 0.0000E+00 0.0000E+00 + 7 0.0000E+00 0.0000E+00 0.0000E+00 + 8 0.0000E+00 0.6168E-01 0.1475E-01 + 9 0.0000E+00 0.1724E+00 0.5967E-01 10 0.0000E+00 0.3451E+00 0.3048E-01 + + 11 0.0000E+00 0.5363E+00 0.8202E-01 12 0.0000E+00 0.7486E+00 0.3586E-01 13 0.0000E+00 0.9656E+00 0.8771E-01 0 OUTPUT OF \$OIL REACTIONS, STRESSES AND TRANSVERSE DISPLACEMENTS 0 -1 DISPLACEMENTS IN INCIDENCES 1 2 3 0 ELEMENT NODE 1 0.00000E+00 0.00000E+00 0.00000E+00 NODE 0.0000E+00 0.00000E+00 0.0000E+00 NODE 3 0.00000E+00 0.0000F+000.0000F+00FORCES ACTING ALONG THE 9 DOF 0 0.00000E+00 NODE 1 0.00000E+00 0.00000E+00 0.0000E+00 NODE 2 0.0000E+00 0.0000E+00 NODE 3 0.00000E+00 0.00000E+00 0.00000E+00 OELEMENT 1, FROM NODE 1, TO NODE 3 - LENGTH = 5.00 ft 0 left half of span, at tenth points of length span 0.3 span 0.2 span span span span 0.0 0.1 0.4 0.5 0,000 0,000 soil,k/ft ↓0.000 0.000 0.000 0.000 shear, k 0.00 0.00 0.00 0.00 0.00 0.00 GJ=10; T = 1; L = 15; Page 1 (- GJ*0.9656 + TL) = Bimomento = 5.344

Output Checks, Page 1

CMSOUT bmom,kft 0.00 0.00 0.00 0.00 0.00 tdisp,ft 0.00000 0.00000 0.00000 0.00000 axial,k 0.00 AT 1st END and 0.00 AT 2nd END Oright half of cran at tonth points of length	0.00 0.00000
span span span span span	span
+ 0.5 0.6 0.7 0.8 0.9 soil,k/ft 0.000 0.000 0.000 0.000 0.000 shear,k 0.00 0.00 0.00 0.000 0.000 bmom,kft 0.00 0.000 0.000 0.000 0.000 tdisp,ft 0.00000 0.00000 0.00000 0.00000 0.00000 axial,k 0.00 AT 1st END and 0.00 AT 2nd	1.0 0.000 0.00 0.00 0.00000
O ELEMENT 2 DISPLACEMENTS IN INCIDENCES 3 4 5 NODE 3 0.00000E+00 0.00000E+00 NODE 4 0.00000E+00 0.00000E+00 NODE 5 0.00000E+00 0.00000E+00	0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
O FORCES ACTING ALONG THE 9 DOF NODE 3 0.00000E+00 0.00000E+00 NODE 4 0.00000E+00 0.00000E+00 NODE 5 0.00000E+00 0.00000E+00 OELEMENT 2, FROM NODE 3, TO NODE 5 - LENGTH 5.00 ft	0.00000E+00 0.00000E+00 0.00000E+00
span span span span span	span
+ 0.0 0.1 0.2 0.3 0.4 soil,k/ft 0.000 0.000 0.000 0.000 0.000 shear,k 0.00 0.00 0.00 0.00 0.00 bmom,kft 0.00 0.00 0.00 0.00 0.00 tdisp,ft 0.00000 0.00000 0.00000 0.00000 axial,k 0.00 AT 1st END and 0.00 AT 2nd END Oright half of snan at tenth points of length	0.000 0.00 0.00 0.000 0.00000
span span span span span span	span
+ 0.5 0.6 0.7 0.8 0.9 soil,k/ft 0.000 0.000 0.000 0.000 shear,k 0.00 0.00 0.00 0.00 bmom,kft 0.00 0.000 0.000 0.00 tdisp,ft 0.00000 0.00000 0.00000 0.00000 axial,k 0.00 AT 1st END and 0.00 AT 2nd END	1.0 0.000 0.00 0.00 0.00000
0 ELEMENT 3 DISPLACEMENTS IN INCIDENCES 5 6 7	
O ELEMENT S DISPLACEMENTS IN INCIDENCES S 6 7 NODE 5 0.00000E+00 0.0000E+00 0.000E+00 0.000E+00 <td>0.00000E+00 0.00000E+00 0.00000E+00</td>	0.00000E+00 0.00000E+00 0.00000E+00
NODE 5 0.00000E+00 0.00000E+00 NODE 6 0.00000E+00 0.00000E+00 NODE 7 0.00000E+00 0.00000E+00	0.00000E+00 0.00000E+00 0.00000E+00
0 left half of span, at tenth points of length	
+ 0.0 0.1 0.2 0.3 0.4	o.5
soil,k/ft 0.000 0.000 0.000 0.000 0.000 shear,k 0.00 0.00 0.00 0.00 0.00 bmom,kft 0.00 0.00 0.00 0.00 0.00 tdisp,ft 0.00000 0.00000 0.00000 0.00000 0.00000 axial,k 0.00 AT 1st END and 0.00 AT 2nd END 0.00	0.000 0.00 0.00 0.0000
span span span span span span	span
+ 0.5 0.6 0.7 0.8 0.9 soil,k/ft 0.000 0.000 0.000 0.000 0.000 shear,k 0.00 0.00 0.00 0.00 0.000 bmom,kft 0.00 0.000 0.00 0.00 0.00 tdisp,ft 0.00000 0.00000 0.00000 0.00000 0.00000 axial,k 0.00 AT 1st END and 0.00 AT 2nd END	1.0 0.000 0.00 0.00 0.00000
(-Di + Dj)* GJ + Vj*Lij = Mj-Mi, where GJ [₽] ᠯੳ, ^e Lfj=5 -0.0 +0.0)*10 -0*5 = 0 -0 + 0.0 = 0	

Output Checks, Page 2

GJ=10; T = 1; L = 15;	
$(-GJ^{*}0.9656 + 1L) = Bimomento = 5.344$ CMSOUL	
O ELEMENT 4 DISPLACEMENTS IN INCIDENCES 7 8 9 NODE 7 0.00000E+00 0.00000E+00 0.00000E+00 0.61681E-01 NODE 8 0.00000E+00 0.61681E-01 0.17239E+00 0.17239E+00 0 FORCES ACTING ALONG THE 9 0.00	0.00000E+00 0.14750E-01 0.59675E-01
NODE 7 0.00000E+00 -0.10000E+01 NODE 8 0.00000E+00 -0.21316E-13 NODE 9 0.00000E+00 0.10000E+01 0ELEMENT 4, FROM NODE 7, TO NODE 9 - LENGTH 5.00 ft	-0.53443E+01 0.11369E-12 0.20682E+01
0 left half of span,at tenth points of length span span span span span span	span
+ 0.0 0.1 0.2 0.3 0.4 soil,k/ft 0.000 0.000 0.000 0.000 0.000 shear,k -1.00 -1.00 -1.00 -1.00 -1.00 bmom,kft 5.34 4.87 4.43 4.03 3.67 tdisp,ft 0.00000 0.00223 0.00866 0.01892 0.03265 axial,k 0.00 AT 1st END and 0.00 AT 2nd END Oright half of span.at tenth points of length	0.5 0.000 -1.00 3.34 0.04955
span span span span span span span	span 1.0
soil,k/ft 0.000 0.000 0.000 0.000 0.000 shear,k -1.00 -1.00 -1.00 -1.00 -1.00 bmom,kft 3.34 3.04 2.76 2.51 2.28 tdisp,ft 0.04955 0.06934 0.09174 0.11652 0.14347 axial,k 0.00 AT 1st END and 0.00 AT 2nd END	0.000 -1.00 2.07 0.17239
O ELEMENT 5 DISPLACEMENTS IN INCIDENCES 9 10 11 NODE 9 0.00000E+00 0.17239E+00 NODE 10 0.00000E+00 0.34515E+00 NODE 11 0.00000E+00 0.53626E+00 O FORCES ALONG THE 9 0	0.59675E-01 0.30482E-01 0.82015E-01
NODE 9 0.0000E+00 -0.10000E+01 NODE 10 0.00000E+00 0.10658E-12 NODE 11 0.00000E+00 0.10000E+01 OELEMENT 5, FROM NODE 9, TO NODE 11 - LENGTH 5.00 ft	-0.20682E+01 -0.11369E-11 0.70689E+00
0 Tert half of span, at tenth points of length span span	span 0.5 0.000 -1.00 1.25 0.34061
span span span span span span span + 0.5 0.6 0.7 0.8 0.9 soil,k/ft 0.000 0.000 0.000 0.000 shear,k -1.00 -1.00 -1.00 -1.00 bmom,kft 1.25 1.12 1.01 0.90 0.80 tdisp,ft 0.34061 0.37799 0.41634 0.45557 0.49557 axial,k 0.00 AT 1st END and 0.00 AT 2nd END	span 1.0 0.000 -1.00 0.71 0.53626
O ELEMENT 6 DISPLACEMENTS IN INCIDENCES 11 12 13 NODE 11 0.00000E+00 0.53626E+00 NODE 12 0.00000E+00 0.74858E+00 NODE 13 0.00000E+00 0.96557E+00 O EORCES ACTING ALONG THE 9	0.82015E-01 0.35859E-01 0.87706E-01
0 FORCES ACTING ALONG THE 9 DOF NODE 11 0.00000E+00 -0.10000E+01 NODE 12 0.00000E+00 -0.63949E-13 NODE 13 0.00000E+00 0.10000E+01 0ELEMENT 6, FROM NODE 11, TO NODE 13 - LENGTH = 5.00 ft 0 left half of span, at tenth points of length (-Di + Dj)* GJ + Vj*Lij = Mj-Mi, where GJ=1⑦,201=10 -0.17239 + 0.53626)*10 - 1*5 = -1.3613 -2 07 + 0 71 = -1.36 OK -0.500000000000000000000000000000000000	-0.70689E+00 0.56843E-12 -0.15632E-12

Output Checks, Page 3

Output Checks, Last Page

Elastic Line of TWB Cantilevered at Midspan

	Cross	Section	Torques	Diagrams
--	-------	---------	---------	----------

Data Processed	by Spreadsheet
Data I IUCCSSCU	UV Spicausiicei

elm	Ζ	Φ	Т	B(z)	Φ'	Φ "	$\Phi^{\prime\prime\prime}$	GJΦ'	-ЕСwФ'''	Т
1	0	0	0	0	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00
	0.5	0	0	0	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00
	1	0	0	0	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00
	1.5	0	0	0	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00
	2	0	0	0	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00
	2.5	0	0	0	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00
	3	0	0	0	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00
	3.5	0	0	0	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00
	4	0	0	0	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00
	4.5	0	0	0	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00
2	5	0	0	0	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00
	5.5	0	0	0	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00
	6	0	0	0	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00
	6.5	0	0	0	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00
	7	0	0	0	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00
	7.5	0	0	0	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00
	8	0	0	0	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00
	8.5	0	0	0	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00
	9	0	0	0	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00
	9.5	0	0	0	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00

3	10	0	0	0	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00
	10.5	0	0	0	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00
	11	0	0	0	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00
	11.5	0	0	0	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00
	12	0	0	0	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00
	12.5	0	0	0	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00
	13	0	0	0	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00
	13.5	0	0	0	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00
	14	0	0	0	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00
	14.5	0	0	0	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00
4	15	0	-1	5.3443	0.00E+00	1.84E-02	-3.43E-03	0.00E+00	9.94E-01	0.99
	15.5	0.0022	-1	4.8666	8.80E-03	1.68E-02	-3.14E-03	8.80E-02	9.10E-01	1.00
	16	0.0087	-1	4.431	1.68E-02	1.53E-02	-2.87E-03	1.68E-01	8.33E-01	1.00
	16.5	0.0189	-1	4.0335	2.41E-02	1.39E-02	-2.62E-03	2.41E-01	7.60E-01	1.00
	17	0.0327	-1	3.6709	3.07E-02	1.27E-02	-2.39E-03	3.07E-01	6.93E-01	1.00
	17.5	0.0496	-1	3.3399	3.68E-02	1.15E-02	-2.18E-03	3.68E-01	6.32E-01	1.00
	18	0.0693	-1	3.0377	4.23E-02	1.05E-02	-1.99E-03	4.23E-01	5.77E-01	1.00
	18.5	0.0917	-1	2.7617	4.73E-02	9.52E-03	-1.82E-03	4.73E-01	5.26E-01	1.00
	19	0.1165	-1	2.5096	5.18E-02	8.66E-03	-1.66E-03	5.18E-01	4.82E-01	1.00
	19.5	0.1435	-1	2.2791	5.59E-02	7.86E-03	-1.53E-03	5.59E-01	4.43E-01	1.00
5	20	0.1724	-1	2.0682	5.97E-02	7.13E-03	-1.38E-03	5.97E-01	4.01E-01	1.00
	20.5	0.2031	-1	1.8752	6.31E-02	6.47E-03	-1.27E-03	6.31E-01	3.69E-01	1.00
	21	0.2354	-1	1.6984	6.62E-02	5.86E-03	-1.17E-03	6.62E-01	3.39E-01	1.00
	21.5	0.2692	-1	1.5362	6.89E-02	5.30E-03	-1.07E-03	6.89E-01	3.11E-01	1.00
	22	0.3043	-1	1.3873	7.15E-02	4.78E-03	-9.85E-04	7.15E-01	2.86E-01	1.00
	22.5	0.3406	-1	1.2504	7.37E-02	4.31E-03	-9.06E-04	7.37E-01	2.63E-01	1.00
	23	0.378	-1	1.1242	7.58E-02	3.88E-03	-8.34E-04	7.58E-01	2.42E-01	1.00
	23.5	0.4163	-1	1.0078	7.76E-02	3.48E-03	-7.71E-04	7.76E-01	2.24E-01	1.00
	24	0.4556	-1	0.9	7.93E-02	3.10E-03	-7.15E-04	7.93E-01	2.07E-01	1.00
	24.5	0.4956	-1	0.8	8.07E-02	2.76E-03	-6.67E-04	8.07E-01	1.93E-01	1.00
6	25	0.5363	-1	0.7069	8.20E-02	2.44E-03	-6.18E-04	8.20E-01	1.79E-01	1.00
	25.5	0.5776	-1	0.6199	8.32E-02	2.14E-03	-5.80E-04	8.32E-01	1.68E-01	1.00
	26	0.6194	-1	0.5382	8.42E-02	1.86E-03	-5.47E-04	8.42E-01	1.58E-01	1.00
	26.5	0.6617	-1	0.4612	8.50E-02	1.59E-03	-5.17E-04	8.50E-01	1.50E-01	1.00
	27	0.7044	-1	0.3882	8.58E-02	1.34E-03	-4.92E-04	8.58E-01	1.43E-01	1.00
	27.5	0.7474	-1	0.3185	8.64E-02	1.10E-03	-4.70E-04	8.64E-01	1.36E-01	1.00
	28	0.7907	-1	0.2516	8.69E-02	8.67E-04	-4.53E-04	8.69E-01	1.31E-01	1.00
	28.5	0.8342	-1	0.1868	8.72E-02	6.44E-04	-4.40E-04	8.72E-01	1.28E-01	1.00
	29	0.8779	-1	0.1236	8.75E-02	4.27E-04	-4.31E-04	8.75E-01	1.25E-01	1.00
	29.5	0.9217	-1	0.0616	8.77E-02	2.12E-04	-4.26E-04	8.77E-01	1.24E-01	1.00
	30	0.9656	-1	0	8.77E-02	-4.35E-07	-4.26E-04	8.77E-01	1.23E-01	1.00

APPENDIX B

BAR RESTRAINED AGAINST TWIST AT MIDSPAN

The present material contents the input model, input data, input forms, figures of output data in notepad version, and excel processed output data and charts for the corresponding case. The asymptotic behavior of the thin-walled beam elastic line is successfully shown in the charts, which evidences the efficiency of the high order finite element used by BMTORSWP. The cross section shown in the input form is not that of the real bar in the parametric experiment. It just provides an order of magnitude for the bogus cross section torsional properties in order to make verisimilar the input data.

Straight TWB Restrained against Rotation at Midspan before Twisting Action

Straight TWB Restrained against Rotation at Midspan about to be Twisted

A Square Fastener at Right Side and a Separator at Top Prevent Rotation

Detail of Right Fastener

At Both Edges, Cross Section Distortion Prevented by a Piece of Wood Only Fastened at One Side with Centerline Guides for Measuring the Twist Angle

Elastic Line Detail at Free Near End without External Torque

Analogue EBC in 2nd Order Equilibrium with a 1 kip Reaction at Midspan Support

Zero External Torque with Restrained Warping at First Span Tw +Tt = T = 0. Tw & Tt $\neq 0$

Input Data

Input Form with Input Model, Left Side

Input Form with Input Model, Right Side

6eout YOU ARE USING COMPUTER PROGRAM BMTORSW, DEVELOPED BY DR. BERNARDO DESCHAPELLES 0 INPUT DATA FILE NAME IS = 6el.txt 0 OUTPUT FILE NAME IS = 6eout.txt STORAGE FILE FOR POST-PROCESSING WITH EXCEL = 6egrf.grf 0 0 6 Elements' beam. Torque angle restrained ad midspan. 1K-in torque at far end Omodulus of elasticity of the material= 29000. k/ft2 OELEM nodes inertia length distrib. load AXIAL SOIL NORMAL MODULUS, Ksf angle ft.4 at j 0.000 1st END fť I OAD 2nd END rad at i 3 0.03000 5.00 0.000 0.000 00 0.0 0.0 -10.002 3 5 0.03000 5.00 0.000 0.000 -10.000.0 0.0 0.000 00 0.000 00 3 5.00 0.0 57 7 0.03000 0.000 0.000 0.0 -10.000.000 00 4 9 0.03000 0.000 0.000 -10.000.0 0.0 $\begin{array}{cccc} 11 & 0.03000 & 5.00 \\ 13 & 0.03000 & 5.00 \end{array}$ 5 g 0.000 0.000 -10.000.00.0 0.000 00 0.000 00 6 110.000 0.000 -10.000.0 0.0 INPUT DATA RELATED TO THE 1 SUPPORTS 0 17010 INPUT OF NODAL FORCES RELATED TO GLOBAL AXIS 2 0 1.00 113 0 FINAL SOLUTION FOUND AFTER 1 ITERATIONS Output of nodal displacements in reference to global axes displ. displ. displ. node displ. displ. 0 Onode displ. displ. displ. along y or nonn2 along x along y around z along x around z or nonn 3 or nonn1 or nonn2 or nonn 3 or nonn1 1 0.0000E+00 -0.4304E+00 0.1925E-01 2 0.0000E+00 -0.3811E+00 0.8372E-02 + 3 0.0000E+00 -0.3295E+00 0.2209E-01 4 0.0000E+00 -0.2680E+00 0.1084E-01 5 0.0000E+00 -0.1988E+00 0.3142E-01 + 6 0.0000E+00 -0.1071E+00 0.1649E-01 + 7 0.0000E+00 0.0000E+00 0.5000E-01 8 0.0000E+00 0.1429E+00 0.2518E-01 + 9 0.0000E+00 0.3012E+00 0.6858E-01 + 10 0.0000E+00 0.4820E+00 0.3083E-01 + + 11 0.0000E+00 0.6705E+00 0.7791E-01 12 0.0000E+00 0.8689E+00 0.3329E-01 1 kip x 15 in = 15 k - in ~ 10 kip x+ 13 0.0000E+00 0.1070E+01 0.8075E-01 <u>(1.06959+0.43041)in</u> = 15.0 0 OUTPUT OF SOIL REACTIONS, STRESSES AND TRANSVERSE DISPLACEMENTS 0 -DISPLACEMENTS IN INCIDENCES 0.00000E+00 1 2 3 0 ELEMENT 1 -0.43041E+00 0.19253E-01 NODE 1 -0.38111E+00 2 0.00000E+00 0.83720E-02 NODE 0.22086E-01 3 NODE 0.00000E+00 -0.32946E+00 FORCES ACTING ALONG THE 9 DOF 0 0.00000E+00 NODE 1 -0.46896E-12 -0.95923E-13 2 -0.38654E-11 0.00000E+00 -0.16342E-12 NODE NODE 3 0.00000E+00 -0.85265E-12 0.10094E+01 OELEMENT 1, FROM NODE 1, TO NODE 3 - LENGTH O left half of span, at tenth points of length LENGTH = 5.00 ftspan 0.3 span span span span span 0.0 0.1 0.2 0.4 0.5 0.000 soil,k/ft 0.000 0.000 0.000 0.000 0.000 shear.k 0.00 0.00 0.00 0.00 0.00 0.00 Page 1

Page 1 Output Data

6eout 0.00 0.19 0.29 bmom.kft 0.10 0.39 0.49 -0.40140 -0.39160 -0.38170 -0.43041 -0.42078 -0.41112 tdisp,ft 0.00 AT 2nd END 0.00 AT 1st END and axialk Oright half of span, at tenth points of length span span span span span span 0.7 0.9 0.5 0.6 0.8 1.0 soil,k/ft 0.000 0.000 0.000 0.000 0.000 0.000 shear, k 0.00 0.00 0.00 0.00 0.00 0.00 bmom, kft 0.49 0.59 0.69 0.79 0.90 1.01 tdisp,ft -0.38170 -0.37165 -0.36143 -0.35101 -0.34037 -0.32946 axial,k 0.00 AT 1st END and 0.00 AT 2nd END 0-----_____ _____ _____ 2 DISPLACEMENTS IN INCIDENCES 3 0.00000E+00 -(ELEMENT 3 4 5 0 -0.32946E+00 NODE 0.22086E-01 NODE 4 0.00000E+00 -0.26801E+00 0.10836E-01 NODE 5 0.0000E+00-0.19881E+00 0.31420E-01 0 FORCES ACTING ALONG THE 9 DOF NODE 3 0.00000E+00 -0.21316E-12 -0.10094E+01 4 0.00000E+00 -0.56843E-13 0.34106E-11 NODE NODE 5 0.00000E+00 -0.28422E-13 0.23160E+01 OELEMENT 2, FROM NODE 3, TO NODE 5 - LENGTH = 5.00 ft 0 left half of span, at tenth points of length span 0.2 span 0.4 span span span span 0.0 0.1 0.3 0.5 0.000 soil,k/ft 0.000 0.000 0.000 0.000 0.000 shear,k 0.00 0.00 0.00 0.00 0.00 0.00 bmom, kft 1.01 1.12 1.24 1.36 1.48 1.60 tdisp,ft -0.32946 axial,k 0.00 -0.31827 -0.30675 -0.29488 -0.28262 -0.269940.00 AT 1st END and 0.00 AT 2nd END Oright half of span, at tenth points of length , span span 0.8 span span span span 0.9 0.6 0.7 1.0 0.5 0.000 0.000 0.000 soil,k/ft 0.000 0.000 0.000 shear,k bmom,kft 0.00 0.00 0.00 0.00 0.00 0.00 1.74 1.87 1.60 2.01 2.16 2.32 -0.26994 -0.25679 -0.24314 tdisp,ft -0.22896 -0.21420 -0.19881 0.00 AT 1st END and 0.00 AT 2nd END axial,k 0-----------ELEMENT 3 DISPLACEMENTS IN INCIDENCES 5 6 7 0 5 0.0000E+00 -0.19881E+00 0.31420E-01 NODE -0.10711E+00 0.16489E-01 0.00000E+00 NODE 6 0.50000E-01 NODE 7 0.00000E+00 0.00000E+00 FORCES ACTING ALONG THE 9 DOF 0 0.00000E+00 -0.99476E-13 NODE 5 -0.23160E+01 0.00000E+00 NODE 6 0.42633E-13 -0.22737E-12 7 0.00000E+00 -0.28422E-13 0.43041E+01 NODE OELEMENT 3, FROM NODE 5, TO NODE 7 - LENGTH = 5.00 ft 0 left half of span,at tenth points of length span span span span span span 0.3 0.0 0.1 0.2 0.4 0.5 soil,k/ft 0.000 0.000 0.000 0.000 0.000 0.000 shear,k 0.00 0.00 0.00 0.00 0.00 0.00 bmom, kft 2.32 2.48 2.64 2.82 3.00 3.19 -0.19881 -0.18276 -0.16600 -0.14848 -0.13014 -0.11095 tdisp,ft 0.00 AT 1st END and axial,k 0.00 AT 2nd END Oright half of span, at tenth points of length orl span 0.7 span span span span span 0.6 0.9 0.8 1.0 0.5 0.000 0.000 soil,k/ft 0.000 0.000 0.000 0 000 shear,k 0.00 0.00 0.00 0.00 0.00 0.00 bmom, kft 3.193.40 3.61 3.83 4.06 4.30 -0.09084 -0.06975 -0.11095 -0.04762 -0.02439 0.00000 tdisp,ft 0.00 AT 2nd END axial,k 0.00 AT 1st END and Page 2 0 -(-0.19881)*10 +0*5= 1.988 $(-Di + Dj)^* GJ + Vj^*L = Mj - Mi$, where GJ=10 4.30- 2.32 = 1.98 OK

Page 2 Output Data

6eout	
0 ELEMENT 4 DISPLACEMENTS IN INCIDENCES 7 8 9 NODE 7 0.00000E+00 0.00000E+00 NODE 8 0.00000E+00 0.14289E+00 NODE 9 0.00000E+00 0.30119E+00	0.50000E-01 0.25178E-01 0.68580E-01
0 FORCES ACTING ALONG THE 9 DOF NODE 7 0.00000E+00 -0.10000E+01 NODE 8 0.00000E+00 0.14211E-12 NODE 9 0.00000E+00 0.10000E+01 OELEMENT 4, FROM NODE 7, TO NODE 9 - LENGTH = 5.00 ft	-0.43041E+01 0.68212E-12 0.23160E+01
span span	span 5 0.000 -1.00 3.19 .13905
+ 0.5 0.6 0.7 0.8 0.9 1.0 soil,k/ft 0.000 0.000 0.000 0.000 0.000 shear,k -1.00 -1.00 -1.00 -1.00 -1.00 bmom,kft 3.19 3.00 2.82 2.64 2.48 tdisp,ft 0.13905 0.16986 0.20152 0.23400 0.26724 0 axial,k 0.00 AT 1st END and 0.00 AT 2nd END 0	span 0 0.000 -1.00 2.32 .30119
O ELEMENT 5 DISPLACEMENTS IN INCIDENCES 9 10 11 NODE 9 0.00000E+00 0.30119E+00 NODE 10 0.00000E+00 0.48199E+00 NODE 11 0.00000E+00 0.67054E+00	0.68580E-01 0.30831E-01 0.77914E-01
NODE 9 0.00000E+00 -0.10000E+01 NODE 10 0.00000E+00 -0.34106E-12 NODE 11 0.00000E+00 0.10000E+01 0ELEMENT 5, FROM NODE 9, TO NODE 11 - LENGTH 5.00 ft	-0.23160E+01 0.22737E-11 0.10094E+01
0 left half of span, at tenth points of length span span span span span span + 0.0 0.1 0.2 0.3 0.4 0.1 soil,k/ft 0.000 0.000 0.000 0.000 shear,k -1.00 -1.00 -1.00 -1.00 -1.00 bmom,kft 2.32 2.16 2.01 1.87 1.74 tdisp,ft 0.30119 0.33580 0.37104 0.40686 0.44321 0 axial,k 0.00 AT 1st END and 0.00 AT 2nd END	span 5 0.000 -1.00 1.60 .48006
span span	span 0 0.000 -1.00 1.01 .67054
0 ELEMENT 6 DISPLACEMENTS IN INCIDENCES 11 12 13 NODE 11 0.00000E+00 0.67054E+00 NODE 12 0.00000E+00 0.86889E+00 NODE 13 0.00000E+00 0.10696E+01 0 EOPCIES ACTING ALONG THE 9 DOF	0.77914E-01 0.33295E-01 0.80747E-01
NODE 11 0.00000E+00 -0.10000E+01 NODE 12 0.00000E+00 -0.51159E-12 NODE 13 0.00000E+00 0.10000E+01 OELEMENT 6, FROM NODE 11, TO NODE 13 - LENGTH 0 left half of span, at tenth points of length - 0.00000E+00 - 0.10000E+01	-0.10094E+01 -0.10914E-10 -0.68212E-12

Page 3 Output Data

				6eout		
	span	span	span	span	span	span
+	0.0	0.1	0.2	0.3	0.4	0.5
soil,k/ft	0.000	0.000	0.000	0.000	0.000	0.000
shear, k	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00
bmom, kft	1.01	0.90	0.79	0.69	0.59	0.49
tdisp,ft	0.67054	0.70963	0.74899	0.78857	0.82835	0.86830
axial,k	0.00	AT 1st END	and	0.00 AT 2n	d END	
Oright hal	f of span,	at tenth p	oints of	length		
	span	span	_ span	span	span	span
+	0.5	0.6	0.7	0.8	0.9	1.0
SOTT, K/TL	0.000	0.000	0.000	0.000	0.000	0.000
bmom kft	-1.00	-1.00	-1.00	-1.00	-1.00	-1.00
tdicn ft	0 96920	0.09	0.29	0.19	1 02022	1 06050
avial k	0,00030	AT 1c+ END	and	0.90000 0.00 AT 2n	d END	1.00939
1	/ 0.00	AT ISC END	anu	0.00 AT 21		
1	1kip x 15	in = 15 k-in-	-10kip x (1	.06959+0.43	3041)in = 1	5.0 k-in
	$\Lambda^{\uparrow} \Lambda$		Λ	\wedge	1	
	т' і		T		<u>/</u>	
			GJ	Ψ13	$-\Psi_1$	

Last Page Output Data

Table of Bimoment, Torque and Torque Angle and Derivatives

		-		1	1	0	
				GJ	10	ksi-in^2	
	6 Ele	ements	s-beam.	Fork ad midspan. 1K-in torque at far end			
				E	29000	ksi/in^2	
				Cw	0.030	in^6	
elm	Ζ	Φ	Torque	Bimoment	Φ'	Φ "	Φ '''
1	0.00	-0.43	0.00	0.000	1.925E-02	-2.452E-08	2.214E-04
	0.50	-0.42	0	0.096	1.928E-02	1.107E-04	2.217E-04
	1.00	-0.41	0	0.193	1.936E-02	2.217E-04	2.226E-04
	1.50	-0.4	0	0.290	1.950E-02	3.334E-04	2.242E-04
	2.00	-0.39	0	0.388	1.970E-02	4.460E-04	2.264E-04
	2.50	-0.38	0	0.487	1.995E-02	5.599E-04	2.293E-04
	3.00	-0.37	0	0.588	2.026E-02	6.754E-04	2.329E-04
	3.50	-0.36	0	0.690	2.062E-02	7.929E-04	2.371E-04
	4.00	-0.35	0	0.794	2.105E-02	9.126E-04	2.420E-04
	4.50	-0.34	0	0.900	2.154E-02	1.035E-03	2.475E-04
	5.00	-0.33	0	1.009	2.209E-02	1.160E-03	2.537E-04
2							
	5.00	-0.33	0	1.009	2.209E-02	1.160E-03	2.542E-04
	5.50	-0.32	0	1.121	2.270E-02	1.289E-03	2.610E-04
	6.00	-0.31	0	1.237	2.338E-02	1.421E-03	2.687E-04
	6.50	-0.29	0	1.355	2.412E-02	1.558E-03	2.772E-04

elm	Ζ	Φ	Т	Bimom	Φ'	Φ "	Φ'''
	7.00	-0.28	0	1.478	2.493E-02	1.699E-03	2.866E-04
	7.50	-0.27	0	1.605	2.582E-02	1.844E-03	2.968E-04
	8.00	-0.26	0	1.736	2.678E-02	1.996E-03	3.079E-04
	8.50	-0.24	0	1.873	2.782E-02	2.152E-03	3.198E-04
	9.00	-0.23	0	2.015	2.893E-02	2.316E-03	3.326E-04
	9.50	-0.21	0	2.162	3.013E-02	2.485E-03	3.462E-04
	10.00	-0.2	0	2.316	3.142E-02	2.662E-03	3.608E-04
3							
	10.00	-0.2	0	2.316	3.142E-02	2.662E-03	3.618E-04
	10.50	-0.18	0	2.477	3.280E-02	2.847E-03	3.772E-04
	11.00	-0.17	0	2.644	3.427E-02	3.039E-03	3.938E-04
	11.50	-0.15	0	2.819	3.584E-02	3.241E-03	4.118E-04
	12.00	-0.13	0	3.003	3.751E-02	3.451E-03	4.310E-04
	12.50	-0.11	0	3.195	3.929E-02	3.672E-03	4.516E-04
	13.00	-0.09	0	3.396	4.118E-02	3.903E-03	4.735E-04
	13.50	-0.07	0	3.607	4.320E-02	4.146E-03	4.966E-04
	14.00	-0.05	0	3.828	4.533E-02	4.400E-03	5.211E-04
	14.50	-0.02	0	4.060	4.760E-02	4.667E-03	5.469E-04
	15.00	0	0	4.304	5.000E-02	4.947E-03	5.739E-04
4							
	15.00	0	-1	4.304	5.000E-02	4.947E-03	-5.739E-04
	15.50	0.026	-1	4.060	5.240E-02	4.667E-03	-5.469E-04
	16.00	0.052	-1	3.828	5.467E-02	4.400E-03	-5.211E-04
	16.50	0.08	-1	3.607	5.680E-02	4.146E-03	-4.966E-04
	17.00	0.109	-1	3.396	5.882E-02	3.903E-03	-4.735E-04
	17.50	0.139	-1	3.195	6.071E-02	3.672E-03	-4.516E-04
	18.00	0.17	-1	3.003	6.249E-02	3.451E-03	-4.310E-04
	18.50	0.202	-1	2.819	6.416E-02	3.241E-03	-4.118E-04
	19.00	0.234	-1	2.644	6.573E-02	3.039E-03	-3.938E-04
	19.50	0.267	-1	2.477	6.720E-02	2.847E-03	-3.772E-04
	20.00	0.301	-1	2.316	6.858E-02	2.662E-03	-3.618E-04
5							
	20.00	0.301	-1	2.316	6.858E-02	2.662E-03	-3.608E-04
	20.50	0.336	-1	2.162	6.987E-02	2.485E-03	-3.462E-04
	21.00	0.371	-1	2.015	7.107E-02	2.316E-03	-3.326E-04
	21.50	0.407	-1	1.873	7.218E-02	2.152E-03	-3.198E-04
	22.00	0.443	-1	1.736	7.322E-02	1.996E-03	-3.079E-04

elm	Ζ	Φ	Т	Bimom	Φ'	Φ "	Φ '''
	22.50	0.48	-1	1.605	7.418E-02	1.844E-03	-2.968E-04
	23.00	0.517	-1	1.478	7.507E-02	1.699E-03	-2.866E-04
	23.50	0.555	-1	1.355	7.588E-02	1.558E-03	-2.772E-04
	24.00	0.593	-1	1.237	7.662E-02	1.421E-03	-2.687E-04
	24.50	0.632	-1	1.121	7.730E-02	1.289E-03	-2.610E-04
	25.00	0.671	-1	1.009	7.791E-02	1.160E-03	-2.542E-04
6							
	25.00	0.671	-1	1.009	7.791E-02	1.160E-03	-2.537E-04
	25.50	0.71	-1	0.900	7.846E-02	1.035E-03	-2.475E-04
	26.00	0.749	-1	0.794	7.895E-02	9.126E-04	-2.420E-04
	26.50	0.789	-1	0.690	7.938E-02	7.929E-04	-2.371E-04
	27.00	0.828	-1	0.588	7.974E-02	6.754E-04	-2.329E-04
	27.50	0.868	-1	0.487	8.005E-02	5.599E-04	-2.293E-04
	28.00	0.908	-1	0.388	8.030E-02	4.460E-04	-2.264E-04
	28.50	0.949	-1	0.290	8.050E-02	3.334E-04	-2.242E-04
	29.00	0.989	-1	0.193	8.064E-02	2.217E-04	-2.226E-04
	29.50	1.029	-1	0.096	8.072E-02	1.107E-04	-2.217E-04
	30.00	1.07	-1	0.000	8.075E-02	-2.452E-08	-2.214E-04

Table of Excel Processed Data on Torques

	1st. order General Torsion Theory								
elm	Z GJΦ'		-ECwΦ'''	Т					
1		St. Venant	Vlasov	Total					
	0.00	1.925E-01	-1.926E-01	-1.180E-04					
	0.50	1.928E-01	-1.929E-01	-7.900E-05					
	1.00	1.936E-01	-1.937E-01	-6.200E-05					
	1.50	1.950E-01	-1.951E-01	-5.400E-05					
	2.00	1.970E-01	-1.970E-01	3.200E-05					
	2.50	1.995E-01	-1.995E-01	9.000E-06					
	3.00	2.026E-01	-2.026E-01	-2.300E-05					
	3.50	2.062E-01	-2.063E-01	-7.700E-05					
	4.00	2.105E-01	-2.105E-01	-4.000E-05					
	4.50	2.154E-01	-2.153E-01	7.500E-05					
	5.00	2.209E-01	-2.207E-01	1.810E-04					
2									
	5.00	2.209E-01	-2.212E-01	-2.540E-04					

elm	Ζ	GJΦ'	-ECwΦ'''	Т
	5.50	2.270E-01	-2.271E-01	-7.000E-05
	6.00	2.338E-01	-2.338E-01	3.100E-05
	6.50	2.412E-01	-2.412E-01	3.600E-05
	7.00	2.493E-01	-2.493E-01	-4.200E-05
	7.50	2.582E-01	-2.582E-01	-1.600E-05
	8.00	2.678E-01	-2.679E-01	-7.300E-05
	8.50	2.782E-01	-2.782E-01	-2.600E-05
	9.00	2.893E-01	-2.894E-01	-6.200E-05
	9.50	3.013E-01	-3.012E-01	1.060E-04
	10.00	3.142E-01	-3.139E-01	3.040E-04
3				
	10.00	3.142E-01	-3.148E-01	-5.660E-04
	10.50	3.280E-01	-3.282E-01	-1.640E-04
	11.00	3.427E-01	-3.426E-01	9.400E-05
	11.50	3.584E-01	-3.583E-01	1.340E-04
	12.00	3.751E-01	-3.750E-01	1.300E-04
	12.50	3.929E-01	-3.929E-01	8.000E-06
	13.00	4.118E-01	-4.119E-01	-1.450E-04
	13.50	4.320E-01	-4.320E-01	-4.200E-05
	14.00	4.533E-01	-4.534E-01	-5.700E-05
	14.50	4.760E-01	-4.758E-01	1.970E-04
	15.00	5.000E-01	-4.993E-01	7.070E-04
4				
	15.00	5.000E-01	4.993E-01	9.993E-01
	15.50	5.240E-01	4.758E-01	9.998E-01
	16.00	5.467E-01	4.534E-01	1.000E+00
	16.50	5.680E-01	4.320E-01	1.000E+00
	17.00	5.882E-01	4.119E-01	1.000E+00
	17.50	6.071E-01	3.929E-01	1.000E+00
	18.00	6.249E-01	3.750E-01	9.999E-01
	18.50	6.416E-01	3.583E-01	9.999E-01
	19.00	6.573E-01	3.426E-01	9.999E-01
	19.50	6.720E-01	3.282E-01	1.000E+00
	20.00	6.858E-01	3.148E-01	1.001E+00
5	20.00	6.858E-01	3.139E-01	9.997E-01
	20.50	6.987E-01	3.012E-01	9.999E-01
	21.00	7.107E-01	2.894E-01	1.000E+00

elm	Ζ	GJΦ'	-ECwΦ'''	Т
	21.50	7.218E-01	2.782E-01	1.000E+00
	22.00	7.322E-01	2.679E-01	1.000E+00
	22.50	7.418E-01	2.582E-01	1.000E+00
	23.00	7.507E-01	2.493E-01	1.000E+00
	23.50	7.588E-01	2.412E-01	1.000E+00
	24.00	7.662E-01	2.338E-01	1.000E+00
	24.50	7.730E-01	2.271E-01	1.000E+00
	25.00	7.791E-01	2.212E-01	1.000E+00
6	25.00	7.791E-01	2.207E-01	9.998E-01
	25.50	7.846E-01	2.153E-01	9.999E-01
	26.00	7.895E-01	2.105E-01	1.000E+00
	26.50	7.938E-01	2.063E-01	1.000E+00
	27.00	7.974E-01	2.026E-01	1.000E+00
	27.50	8.005E-01	1.995E-01	1.000E+00
	28.00	8.030E-01	1.970E-01	1.000E+00
	28.50	8.050E-01	1.951E-01	1.000E+00
	29.00	8.064E-01	1.937E-01	1.000E+00
	29.50	8.072E-01	1.929E-01	1.000E+00
	30.00	8.075E-01	1.926E-01	1.000E+00

30-in-EBC with 6 Elements, θ =0 at Midspan, 1k-in Torque at Far End

30-in-TWB with 6 Elements, $\theta=0$ at Midspan, 1k-in Torque at Far End

Bimoment 30-in-TWB with 6 Elements, $\theta=0$ at Midspan, 1K-in at Far End

APPENDIX C

CANTILEVERED SINGLE SPAN BAR

Twist Angle First Derivative

Twist Angle Second Derivative

Twist Angle Third Derivative

Torques at Cross Section

Torques at Cross Section with Total Torsion Computed from Derivatives

XS data									
GJ=	10			L=	3.000E+01				
E=	29000	Т=	1k-in	λ	1.857E-01				
Cw=	0.01			λL=	5.571E+00				

Single Span Cantilevered Bar under 1k-in-Torque at Far End

elm	Ζ	Φ	Φ'	Φ "	Φ'''	GJΦ'	ECwΦ'''	Т
1								
	0	0	0.00E+00	1.86E-02	-3.43E-03	0.000E+00	9.935E-01	0.994
	0.5	0.0023	8.87E-03	1.69E-02	-3.14E-03	8.866E-02	9.094E-01	0.998
	1	0.0087	1.70E-02	1.54E-02	-2.87E-03	1.695E-01	8.311E-01	1.001
	1.5	0.0191	2.43E-02	1.41E-02	-2.61E-03	2.431E-01	7.581E-01	1.001
	2	0.0329	3.10E-02	1.28E-02	-2.38E-03	3.102E-01	6.905E-01	1.001
	2.5	0.05	3.71E-02	1.17E-02	-2.17E-03	3.714E-01	6.284E-01	1.000
	3	0.07	4.27E-02	1.06E-02	-1.97E-03	4.271E-01	5.722E-01	0.999
	3.5	0.0926	4.78E-02	9.70E-03	-1.80E-03	4.779E-01	5.211E-01	0.999
	4	0.1177	5.24E-02	8.84E-03	-1.64E-03	5.242E-01	4.753E-01	1.000
	4.5	0.145	5.66E-02	8.05E-03	-1.50E-03	5.664E-01	4.353E-01	1.002
	5	0.1743	6.05E-02	7.33E-03	-1.38E-03	6.048E-01	4.008E-01	1.006
2								
	5	0.1743	6.05E-02	7.34E-03	-1.35E-03	6.048E-01	3.927E-01	0.997
	5.5	0.2054	6.40E-02	6.69E-03	-1.24E-03	6.398E-01	3.593E-01	0.999
	6	0.2382	6.72E-02	6.09E-03	-1.13E-03	6.718E-01	3.286E-01	1.000
	6.5	0.2725	7.01E-02	5.55E-03	-1.03E-03	7.009E-01	2.996E-01	1.000
	7	0.3083	7.27E-02	5.06E-03	-9.41E-04	7.274E-01	2.729E-01	1.000
	7.5	0.3452	7.52E-02	4.61E-03	-8.57E-04	7.515E-01	2.484E-01	1.000
	8	0.3834	7.74E-02	4.20E-03	-7.80E-04	7.736E-01	2.261E-01	1.000
	8.5	0.4226	7.94E-02	3.83E-03	-7.10E-04	7.936E-01	2.059E-01	1.000
	9	0.4627	8.12E-02	3.49E-03	-6.48E-04	8.119E-01	1.879E-01	1.000
	9.5	0.5037	8.29E-02	3.18E-03	-5.94E-04	8.286E-01	1.721E-01	1.001
	10	0.5455	8.44E-02	2.90E-03	-5.46E-04	8.438E-01	1.585E-01	1.002
3								
	10	0.5455	8.44E-02	2.90E-03	-5.35E-04	8.438E-01	1.552E-01	0.999
	10.5	0.5881	8.58E-02	2.64E-03	-4.90E-04	8.576E-01	1.421E-01	1.000
	11	0.6313	8.70E-02	2.41E-03	-4.48E-04	8.702E-01	1.299E-01	1.000
	11.5	0.6751	8.82E-02	2.19E-03	-4.09E-04	8.817E-01	1.185E-01	1.000
	12	0.7194	8.92E-02	2.00E-03	-3.72E-04	8.922E-01	1.080E-01	1.000
	12.5	0.7643	9.02E-02	1.82E-03	-3.39E-04	9.017E-01	9.828E-02	1.000
	13	0.8096	9.10E-02	1.66E-03	-3.09E-04	9.104E-01	8.949E-02	1.000
	13.5	0.8553	9.18E-02	1.51E-03	-2.81E-04	9.183E-01	8.152E-02	1.000
	14	0.9014	9.26E-02	1.38E-03	-2.57E-04	9.255E-01	7.444E-02	1.000
	14.5	0.9478	9.32E-02	1.25E-03	-2.35E-04	9.321E-01	6.818E-02	1.000
	15	0.9946	9.38E-02	1.14E-03	-2.17E-04	9.381E-01	6.281E-02	1.001
4								

	15	0 9946	938E-02	1 14E-03	_2 12E_04	9381E-01	6 154E-02	1 000
	15 5	1 0/16	9.30E-02	1.14E-03	-2.12L-04	9.301E-01	5.638E_02	1.000
	15.5	1 0880	9.44E-02	9.75-0.04	-1.74E-04	9.455E-01	5.058E-02	1.000
elm	7	<u>1.000</u>	<u>ጋ.ዓጋይ-02</u> ው'	<u>ጋ.ዓ/ይ-0ዓ</u> 	-1.78L-04 	GIM'	5.150L-02	T.000
CIIII	L	Ψ	Ψ	Ψ	Ψ	01Φ	LCwΨ	1
	16 5	1 1365	9 53E-02	8 62E-04	_1 62E_04	9 530E-01	4 710E-02	1 000
	10.5	1.1303 1 1842	9.55E-02	7 84E-04	-1.02E-04	9.550E-01	4.710E-02	1 000
	175	1.10+2 1 2322	9.61E-02	7.13E-04	-1.40E-04	9.608E-01	3.915E-02	1 000
	17.5	1.2322	9.64E-02	6 49E-04	-1 23E-04	9.600E 01	3.570E-02	1 000
	18 5	1 3286	9.67E-02	5 90E-04	-1 12E-04	9.673E-01	3.260E-02	1 000
	19	1 377	9 70E-02	5 36E-04	-1 03E-04	9 701E-01	2.984E-02	1 000
	19.5	1 4256	9 73E-02	4 87E-04	-9 45E-05	9 727E-01	2 740E-02	1 000
	20	1.4743	9.75E-02	4.41E-04	-8.73E-05	9.750E-01	2.532E-02	1.000
5			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
	20	1.4743	9.75E-02	4.42E-04	-8.56E-05	9.750E-01	2.482E-02	1.000
	20.5	1.5231	9.77E-02	4.01E-04	-7.87E-05	9.771E-01	2.283E-02	1.000
	21	1.572	9.79E-02	3.63E-04	-7.23E-05	9.790E-01	2.098E-02	1.000
	21.5	1.621	9.81E-02	3.28E-04	-6.64E-05	9.808E-01	1.927E-02	1.000
	22	1.6701	9.82E-02	2.96E-04	-6.10E-05	9.823E-01	1.770E-02	1.000
	22.5	1.7192	9.84E-02	2.67E-04	-5.61E-05	9.837E-01	1.627E-02	1.000
	23	1.7685	9.85E-02	2.40E-04	-5.17E-05	9.850E-01	1.499E-02	1.000
	23.5	1.8177	9.86E-02	2.15E-04	-4.77E-05	9.861E-01	1.384E-02	1.000
	24	1.8671	9.87E-02	1.92E-04	-4.43E-05	9.871E-01	1.284E-02	1.000
	24.5	1.9165	9.88E-02	1.71E-04	-4.13E-05	9.881E-01	1.198E-02	1.000
	25	1.9659	9.89E-02	1.51E-04	-3.89E-05	9.889E-01	1.127E-02	1.000
6								
	25	1.9659	9.89E-02	1.51E-04	-3.83E-05	9.889E-01	1.110E-02	1.000
	25.5	2.0153	9.90E-02	1.32E-04	-3.59E-05	9.896E-01	1.042E-02	1.000
	26	2.0648	9.90E-02	1.15E-04	-3.39E-05	9.902E-01	9.817E-03	1.000
	26.5	2.1144	9.91E-02	9.85E-05	-3.20E-05	9.907E-01	9.286E-03	1.000
	27	2.1639	9.91E-02	8.29E-05	-3.05E-05	9.912E-01	8.831E-03	1.000
	27.5	2.2135	9.92E-02	6.80E-05	-2.91E-05	9.916E-01	8.448E-03	1.000
	28	2.2631	9.92E-02	5.37E-05	-2.81E-05	9.919E-01	8.140E-03	1.000
	28.5	2.3127	9.92E-02	3.99E-05	-2.73E-05	9.921E-01	7.905E-03	1.000
	29	2.3623	9.92E-02	2.64E-05	-2.67E-05	9.923E-01	7.746E-03	1.000
	29.5	2.4119	9.92E-02	1.32E-05	-2.64E-05	9.924E-01	7.656E-03	1.000
	30	2.4615	9.92E-02	-2.69E-08	-2.64E-05	9.924E-01	7.644E-03	1.000

The column of total torque was calculated from the twist angle derivatives with a negligible error. The computer produces a more exact output for the total torque but with opposite sign convention. The charts show how the asymptotic behavior of the twist

angle derivatives increases as the derivative order does. This is a very suitable feature of the finite element used by the software.

APPENDIX D

AISC-DG9-EXAMPLE 5.1

In this EBC of case study two, this material corresponds to the figure of the input model including its 2nd order equilibrium check, table of boundary conditions, stresses superposition strategy, input data, input forms, figures of output data in notepad version, and output charts and output data excel processed.

Normalized figures containing stresses computed by hand from the torque angle and derivatives, comparisons of combined flexure and torsional stresses, maximum twist angle for serviceability could be also found. Again, the asymptotic behavior of the thinwalled beam elastic line is successfully shown in the charts, which evidences the efficiency of the high order finite element used by BMTORSWP.

Equivalent Beam-Column Model for BMTORSWP

Node	TWB	EBC
А	No torque angle, $\theta = 0$	No transverse displacement y = 0
B	Maximum torsional rotation when (d θ /dx) = 0	Maximum vertical transverse displacement when (dy/dx) = 0

Boundary Conditions for TWB and Analog EBC

Stresses Superposition Strategy

The figures containing the Stresses Superposition Strategy correspond to a sign convention based upon the different expected force directions for each of the interest points in the cross section. The AISC uses a positive convention for the stresses that correspond to a thin walled beam that undergoes a flexural deformation.

The asymptotic behavior of the thin-walled beam elastic line produces radical variations in zones near applied loads and supports. This behavior is successfully shown in the charts, due to the suitable high order finite element used by BMTORSWP.

Ex. 5.1 DG-9, Left Side Input Form

Ex. 5.1 DG-9, Right Side Input Form

510T _____ YOU ARE USING COMPUTER PROGRAM BMTORSW, DEVELOPED BY DR. BERNARDO DESCHAPELLES INPUT DATA FILE NAME IS = 51.txt OUTPUT FILE NAME IS = 51ot.txt STORAGE FILE FOR POST-PROCESSING WITH EXCEL = 51grf.grf Restrained Warping Example 5.1. AISC-Design Guide 9. W10x49. T=90/2k-in modulus of elasticity of the material= 29000. k/ft2 ELEM nodes inertia length distrib. load AXIAL SOIL NORMAL MODULUS,Ksf angle at j LOAD 0.000******* ft.4 fť at i 1st END 2nd END rad 3******* 15.00 0.000 0.0 0.000 00 1 0.0 1 0.000******* 5****** 15.00 0.000 0.0 0.0 2 0.000 00 3 7****** 15.00 0.000****** 3 5 0.000 0.0 0.0 0.000 00 9****** 15.00 0.000 0.000******* 4 0.0 0.0 0.000 00 0.000******* 11****** 15.00 0.000 0.000 00 9 5 0.0 0.0 0.000****** 11 13****** 15.00 0.000 6 0.0 0.0 0.000 00 INPUT DATA RELATED TO THE 2 SUPPORTS 2 1 1 1 013 0 0 1 INPUT OF NODAL FORCES RELATED TO GLOBAL AXIS 2 113 -45.00 FINAL SOLUTION FOUND AFTER 1 ITERATIONS Output of nodal displacements in reference to global axes node displ. displ. displ. node displ. displ. displ. along y around z along y or nonn2 along x along x around z or nonn2 or nonn1 or nonn 3 or nonn1 or nonn 3 Noise disappears in the Excel File 0.0000E+00 -0.1604E-02 1 0.0000E+00 2 0.0000E+00 -0.1199E-01 -0.1991E-02 Max. 🦯 3 0.0000E+00 -0.2388E-01 -0.1567E-02 4 0.0000E+00 -0.3539E-01 -0.1896E-02 5 0.0000E+00 -0.4662E-01 -0.1451E-02 6 0.0000E+00 -0.5706E-01 -0.1701E-02 7 0.0000E+00 -0.6700E-01 -0.1252E-02 8 0.0000E+00 -0.7571E-01 -0.1393E-02 9 0.0000E+00 -0.8369E-01 -0.9559E-03 10 0.0000E+00 -0.8991E-01 -0.9546E-03 11 0.0000E+00 -0.9511E-01 -0.5467E-03 12 0.0000E+00 -0.9794E-01 -0.3606E-03 13 0.0000E+00 -0.9940E-01 0.0000E+00 Max. OUTPUT OF SOIL REACTIONS, STRESSES AND TRANSVERSE DISPLACEMENTS _____ Page 1

Page 1, Output File

510T ELEMENT 1 DISPLACEMENTS IN INCIDENCES 1 2 3 0.00000E+00 0.0000E+00 -0.16045E-02 NODE 1 2 -0.19915E-02 0.00000E+00 -0.11986E-01 NODE 3 NODE 0.00000E+00 -0.23879E-01 -0.15667E-02 FORCES ACTING ALONG THE 9 DOF 0.0000E+00 0.45000E+02 NODE 1 0.23919E-10 2 0.00000E+00 0.38613E-10 -0.89074E-10 NODE 3 0.00000E+00 0.30326E+03 NODE -0.45000E+02 ELEMENT 1, FROM NODE 1, TO NODE 3 - LENGTH = 15.00 ft left half of span, at tenth points of length span 0.5 span span span span span 0.1 0.2 0.3 0.4 span 0.0 0.000 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000

 45.00
 45.00
 45.00
 45.00
 45.00
 45.00
 45.00

 0.000
 30.04
 60.09
 90.18
 120.32
 120.32

 0.00000
 -0.00241
 -0.00481
 -0.00721
 -0.00961
soil.k/ft shear,k 45.00 bmom,kft 150.53 tdisp,ft -0.01201 0.00 AT 1st END and 0.00 AT 2nd END axial,k right half of span, at tenth points of length
 span
 <th span 1.0 soil,k/ft 0.000 45.00 shear,k bmom,kft bmom, kft 150.53 180.83 211.23 241.76 272.43 tdisp,ft -0.01201 -0.01440 -0.01678 -0.01916 -0.02152 axial,k 0.00 AT 1st END and 0.00 AT 2nd END 303.26 -0.02388 _____ _____ 2 DISPLACEMENTS IN INCIDENCES 3 4 5 3 0.00000E+00 -0.23879E-01 ELEMENT NODE 3 4 -0.15667E-02 -0.35391E-01 -0.18964E-02 NODE 0.00000E+00 5 -0.46615E-01 NODE 0.00000E+00 -0.14514E-02 FORCES ACTING ALONG THE 9 DOF NODE 3 0.0000E+00 0.45000E+02 -0.30326E+03 4 5 NODE 0.00000E+00 0.90580E-09 -0.59101E-10 NODE 0.00000E+00 -0.45000E+02 0.62430E+03 ELEMENT 2, FROM NODE 3, TO NODE 5 - LENGTH = 15.00 ft left half of span, at tenth points of length span 0.5 span 0.4 0.000 45.00 460.41 -0.03546 right half of span, at tenth points of length span 1.0 span span span span span span 0.6 0.7 0.8 0.9 0.5 0.000 0.000 0.000 0.000 45.00 45.00 soil.k/ft 0.000 0.000
 shear,k
 45.00
 45.00
 45.00
 45.00
 45.00

 bmom,kft
 460.41
 492.58
 525.03
 557.79
 590.87

 tdisp,ft
 -0.03546
 -0.03773
 -0.03998
 -0.04222
 -0.04443

 axial,k
 0.00
 AT
 1st
 END
 and
 0.00
 AT
 2nd
45.00 624.30 -0.04662 ELEMENT 3 DISPLACEMENTS IN INCIDENCES 5 6 7 NODE 5 0.00000E+00 -0.46615E-01 0.00000E+00 -0.46615E-01 -0.14514E-02 6 -0.57057E-01 NODE 0.00000E+00 -0.17006E-02 Page 2

Page 2, Output File

510T -0.67000E-01 7 0.00000E+00 NODE -0.12517E-02 FORCES ACTING ALONG THE 9 DOF NODE 5 0.0000E+00 0.45000E+02 -0.62430E+03 0.24890E-08 6 0.0000E+00 -0.10010E-09 NODE NODE 0.00000E+00 -0.45000E+02 0.98194E+03 7 ELEMENT 3, FROM NODE 5, TO NODE 7 - LENGTH = 15.00 ft left half of span, at tenth points of length span 0.5 span 0.3 span span 0.1 0.2 span span 0.4 0.0 0.000 0.000 45.00 0.000 45.00 0.000 soil,k/ft 0.000 0.000 shear,k 45.00 45.00 45.00 797.30 bmom, kft 624.30 726.84 761.85 658.09 692.26 bmom,ktt 624.30 658.09 692.26 726.84 761.85 tdisp,ft -0.04662 -0.04878 -0.05092 -0.05304 -0.05512 -0.05718 0.00 AT 1st END and 0.00 AT 2nd END axial,k right half of span, at tenth points of length span 0.7 span 0.8 span span 0.6 (span span 1.0 0.5 0.9 0.000 0.000 soil,k/ft 0.000 0.000 0.000 0.000 shear,k 45.00 45.00 45.00 45.00 45.00 45.00 797.30 833.21 869.61 906.52 943.95 -0.06121 -0.06317 -0.06510 981.94 bmom,kft tdisp,ft -0.05718 -0.05921 -0.06700 0.00 AT 1st END and 0.00 AT 2nd END axial,k -----ELEMENT 4 DISPLACEMENTS IN INCIDENCES 7 8 9 7 0.00000E+00 -0.67000E-01 -0.12517E-02 NODE 8 9 0.00000E+00 -0.75713E-01 NODE -0.13927E-02 NODE 0.00000E+00 -0.83687E-01 -0.95591E-03 FORCES ACTING ALONG THE 9 DOF 0.00000E+00 7 0.45000E+02 -0.98194E+03 NODE NODE 8 0.0000E+00 0.78843E-10 0.11085E-08 9 0.00000E+00 -0.45000E+02 0.13972E+04 NODE ELEMENT 4, FROM NODE 7, TO NODE 9 - LENGTH = 15.00 ft left half of span, at tenth points of length span span 1 0.2 span span span span 0.3 0.4 0.5 0.0 0.1 0.000 0.000 0.000 0.000 0.000 soil,k/ft 0.000 45.00 45.00 shear,k 45.00 45.00 45.00 45.00 bmom,kft 981.94 1020.50 1059.66 1099.43 1139.85 1180.93 tdisp,ft -0.06700 -0.06886 -0.07068 -0.07246 -0.07420 -0.07590 0.00 AT 2nd END 0.00 AT 1st END and axial,k right half of span, at tenth points of length span 0.8 span 0.6 span 0.7 span span span 0.9 1.0 0.5 0.000 45 0.000 0.000 45.00 0.000 45.00 0.000 0.000 soil,k/ft 45.00 shear,k 45.00 45.00 45.00 1180.93 1222.70 1265.18 1308.40 1352.39 -0.07590 -0.07755 -0.07916 -0.08072 -0.08223 1397.16 bmom, kft -0.08369 tdisp,ft 0.00 AT 2nd END 0.00 AT 1st END and axial,k ELEMENT 5 DISPLACEMENTS IN INCIDENCES 9 10 11 -0.83687E-01 0.00000E+00 9 -0.95591E-03 NODE NODE 9 NODE 10 NODE 11 0.0000E+00 -0.89910E-01 -0.95463E-03 0.00000E+00 -0.95112E-01 -0.54667E-03 FORCES ACTING ALONG THE 9 DOF NODE 9 0.00000E+00 0.45000E+02 -0.13972E+04 Page 3

Page 3 Output File

510T 0.00000E+00 0.12910E-09 NODE 10 -0.23032E-08 NODE 11 0.00000E+00 -0.45000E+02 0.18943E+04 ELEMENT 5, FROM NODE 9, TO NODE 11 - LENGTH = 15.00 ft left half of span, at tenth points of length span 0.3 span 0.4 span 0.2 span span span 0.0 0.5 0.1 0.000 soil,k/ft 0.000 0.000 0.000 0.000 0.000 45.00 45.00 shear.k 45.00 45.00 45.00 45.00 1442.75 1489.18 1584.68 bmom,kft 1397.16 1536.48 1633.80 -0.08509 -0.08645 -0.08369 -0.08775 -0.08899 tdisp,ft -0.090170.00 AT 2nd END axial,k 0.00 AT 1st END and right half of span, at tenth points of length span 0.7 span 0.8 span span span span 0.9 1.0 0.5 0.6 0.000 0.000 0.000 45.00 0.000 45.00 0.000 soil,k/ft 0.000 45.00 shear.k 45.00 45.00 45.00 1683.88 1734.93 1787.00 -0.09128 -0.09234 -0.09333 1840.12 bmom,kft 1894.30 1633.80 -0.09426 tdisp,ft -0.09017 -0.09511 axial,k 0.00 AT 2nd END 0.00 AT 1st END and _____ ELEMENT 6 DISPLACEMENTS IN INCIDENCES 11 12 13 Max. Twist Angle NODE 11 NODE 12 0.00000E+00 -0.54667E-03 -0.95112E-01 -0.97939E-01 🖌 0.00000E+00 -0.36065E-03 NODE 13 0.0000E+00 -0.99401E-01 0.0000E+00 FORCES ACTING ALONG THE 9 DOF 0.00000E+00 0.45000E+02 -0.18943E+04 NODE 11 NODE 12 0.00000E+00 -0.35084E-09 -0.22137E-08 NODE 13 0.00000E+00 -0.45000E+02 0.25025E+04 ELEMENT 6, FROM NODE 11, TO NODE 13 - LENGTH = 15.00 ft left half of span, at tenth points of length span 0.2 span span span span span 0.0 0.1 0.3 0.4 0.5 0.000 0.000 0.000 0.000 soil.k/ft 0.000 0.000 shear,k 45.00 45.00 45.00 45.00 45.00 45.00 bmom,kft 1894.30 1949.60 2006.03 2063.63 2122.43 2182.47 -0.09511 -0.09590 -0.09661 -0.09724 -0.09780 tdisp,ft -0.09828 0.00 AT 2nd END 0.00 AT 1st END and axial,k right half of span, at tenth points of length span 0.8 span span span 0.6 0.7 span span 0.5 0.9 1.0 0.000 0.000 soil,k/ft 0.000 0.000 0.000 0.000 45.00 45.00 shear,k 45.00 45.00 45.00 45.00 2502.52 2306.42 bmom, kft 2182.47 2243.79 2370.39 2435.74 tdisp,ft -0.09828 -0.09868 -0.09899 -0.09922 -0.09935 -0.099400.00 AT 2nd END axial,k 0.00 AT 1st END and Page 4

Page 4 Output File

3.- First entry row corresponds to the torque angle and the rest to each of its 3 dimensionless increasing derivatives

Notice that in the AISC calculations, the applied torque is negative with the sign convention used in AISC-DG 9: $T_u = -90 \cdot kip \cdot in$

Normalized Torque Angle and Derivatives (Increasing as per the Row Number) from AISC (Left) and BMTORSW

Shear Stress in Web and Flange at Midspan

Two Solutions for Total Shear Stresses

$$\begin{split} & \text{Warping Shear Stress in flange at midspan (fm):} \\ & \tau_{w_fmBmtrs} \coloneqq -E \cdot S_{wl} \cdot \left(\theta_{mBmtrs_3} \cdot \frac{1}{in^3} \right) \cdot \frac{1}{t_f} = -1.28 \cdot ksi \quad \text{BMTORSW} \\ & \tau_{w_fmAisc} \coloneqq -E \cdot S_{wl} \cdot \left(\theta_{mAisc_3} \cdot \frac{1}{in^3} \right) \cdot \frac{1}{t_f} = -1.28 \cdot ksi \quad \text{AISC-DG9} \\ & \text{Warping Shear Stress in flange at the support (fs):} \\ & \tau_{w_fsBmtrs} \coloneqq -E \cdot S_{wl} \cdot \left(\theta_{sBmtrs_3} \cdot \frac{1}{in^3} \right) \cdot \frac{1}{t_f} = -0.57 \cdot ksi \quad \text{BMTORSW} \\ & \tau_{w_fsAisc} \coloneqq -E \cdot S_{wl} \cdot \left(\theta_{sAisc_3} \cdot \frac{1}{in^3} \right) \cdot \frac{1}{t_f} = -0.56 \cdot ksi \quad \text{AISC-DG9} \\ & \text{Swo} \quad S_{wl} \quad S_{wl$$

Shear Stress from Warping

Normal Stresses due to Warping

Superposition of Normal Stresses

Location	Normal Stresses			Shear Stresses			
	σ_{uw}	σ_{ub}	f_{un}	τ_{ut}	τ_{uw}	τ_{ub}	f_{uv}
Midspan	28.53	12.36	40.89				
Flange	±28.1	±12.4	±40.4	0	-1.28	±0.640	-1.92
Web				0		±2.45	-2.45
Support				10.06	0.57	0.64	11.2
Flange	0	0	0	-10.2	-0.564	±0.640	-11.4
Web				-6.16		±2.45	-8.61
Maximum		40, 89	±40.4			11.2	- 11.4
BMTORSWSP figures without sign, next to AISC DG9 figures							

Comparisons Total of Flexure and Torsion Stresses

Torque Angle θ of AISC-Design Guide 9, Ex. 5.1

Torque Angle 1^{st} Derivative θ' of AISC-DG 9, Ex. 5.1

Torque Angle 3^{rd} Derivative θ''' of AISC-DG 9, Ex. 5.1

Shear Stress in Web Due to Pure Torsion

Shear Stress in Flanges Due to Pure Torsion

Shear Stress in Flanges Due to Warping

Normal Stress in Flanges Due to Warping

	BMT	FORSW								
Elem	Ζ	θ	Ζ	Moment	Z	θ'	Ζ	θ"	Z	θ'''
1	0	0	0	0	0	-1.60E-03	0	-4.52E-12	0	3.34E-07
	1.5	-0.0024	1.5	30.0357	1.5	-1.60E-03	1.5	5.00E-07	1.5	3.34E-07
	3	-0.0048	3	60.0889	3	-1.60E-03	3	1.00E-06	3	3.34E-07
	4.5	-0.0072	4.5	90.1772	4.5	-1.60E-03	4.5	1.50E-06	4.5	3.34E-07
	6	-0.0096	6	120.3182	6	-1.60E-03	6	2.00E-06	6	3.35E-07
	7.5	-0.012	7.5	150.5293	7.5	-1.60E-03	7.5	2.51E-06	7.5	3.36E-07
	9	-0.0144	9	180.8283	9	-1.59E-03	9	3.01E-06	9	3.37E-07
	10.5	-0.0168	10.5	211.2328	10.5	-1.59E-03	10.5	3.52E-06	10.5	3.38E-07
	12	-0.0192	12	241.7605	12	-1.58E-03	12	4.03E-06	12	3.40E-07
	13.5	-0.0215	13.5	272.4294	13.5	-1.57E-03	13.5	4.54E-06	13.5	3.41E-07
	15	-0.0239	15	303.2572	15	-1.57E-03	15	5.05E-06	15	3.43E-07
2										
	15	-0.0239	15	303.2572	15	-1.57E-03	15	5.05E-06	15	3.43E-07
	16.5	-0.0262	16.5	334.2619	16.5	-1.56E-03	16.5	5.57E-06	16.5	3.45E-07
	18	-0.0286	18	365.4617	18	-1.55E-03	18	6.09E-06	18	3.48E-07
	19.5	-0.0309	19.5	396.8748	19.5	-1.54E-03	19.5	6.61E-06	19.5	3.50E-07
	21	-0.0332	21	428.5195	21	-1.53E-03	21	7.14E-06	21	3.53E-07
	22.5	-0.0355	22.5	460.4142	22.5	-1.52E-03	22.5	7.67E-06	22.5	3.56E-07
	24	-0.0377	24	492.5776	24	-1.51E-03	24	8.21E-06	24	3.59E-07
	25.5	-0.04	25.5	525.0284	25.5	-1.49E-03	25.5	8.75E-06	25.5	3.62E-07
	27	-0.0422	27	557.7856	27	-1.48E-03	27	9.29E-06	27	3.66E-07
	28.5	-0.0444	28.5	590.8683	28.5	-1.47E-03	28.5	9.84E-06	28.5	3.69E-07
	30	-0.0466	30	624.2958	30	-1.45E-03	30	1.04E-05	30	3.73E-07
3										
	30	-0.0466	30	624.2958	30	-1.45E-03	30	1.04E-05	30	3.73E-07
	31.5	-0.0488	31.5	658.0876	31.5	-1.44E-03	31.5	1.10E-05	31.5	3.77E-07
	33	-0.0509	33	692.2634	33	-1.42E-03	33	1.15E-05	33	3.82E-07
	34.5	-0.053	34.5	726.8432	34.5	-1.40E-03	34.5	1.21E-05	34.5	3.86E-07
	36	-0.0551	36	761.8471	36	-1.38E-03	36	1.27E-05	36	3.91E-07
	37.5	-0.0572	37.5	797.2956	37.5	-1.36E-03	37.5	1.33E-05	37.5	3.96E-07
	39	-0.0592	39	833.2093	39	-1.34E-03	39	1.39E-05	39	4.02E-07
	40.5	-0.0612	40.5	869.6092	40.5	-1.32E-03	40.5	1.45E-05	40.5	4.07E-07
	42	-0.0632	42	906.5166	42	-1.30E-03	42	1.51E-05	42	4.13E-07
	43.5	-0.0651	43.5	943.953	43.5	-1.28E-03	43.5	1.57E-05	43.5	4.19E-07
	45	-0.067	45	981.9402	45	-1.25E-03	45	1.64E-05	45	4.25E-07
4										
	45	-0.067	45	981.9402	45	-1.25E-03	45	1.64E-05	45	4.25E-07
	46.5	-0.0689	46.5	1020.5003	46.5	-1.23E-03	46.5	1.70E-05	46.5	4.32E-07
	48	-0.0707	48	1059.656	48	-1.20E-03	48	1.77E-05	48	4.38E-07
	49.5	-0.0725	49.5	1099.4301	49.5	-1.17E-03	49.5	1.83E-05	49.5	4.45E-07

Table of Output for Graphics in Ex. 5.1

Elem	Ζ	θ	Ζ	Moment	Ζ	θ'	Ζ	θ"	Ζ	θ'''
	90	-0.0994	90	2502.5197	90	0.00E+00	90	4.17E-05	90	7.50E-07
	88.5	-0.0994	88.5	2435.7433	88.5	-6.17E-05	88.5	4.06E-05	88.5	7.34E-07
	87	-0.0992	87	2370.3882	87	-1.22E-04	87	3.95E-05	87	7.18E-07
	85.5	-0.099	85.5	2306.4164	85.5	-1.80E-04	85.5	3.84E-05	85.5	7.03E-07
	84	-0.0987	84	2243.7904	84	-2.37E-04	84	3.74E-05	84	6.88E-07
	82.5	-0.0983	82.5	2182.4738	82.5	-2.92E-04	82.5	3.64E-05	82.5	6.74E-07
	81	-0.0978	81	2122.4307	81	-3.46E-04	81	3.54E-05	81	6.60E-07
	79.5	-0.0972	79.5	2063.6261	79.5	-3.98E-04	79.5	3.44E-05	79.5	6.46E-07
	78	-0.0966	78	2006.0257	78	-4.49E-04	78	3.34E-05	78	6.33E-07
	76.5	-0.0959	76.5	1949.5959	76.5	-4.99E-04	76.5	3.25E-05	76.5	6.20E-07
U	75	-0.0951	75	1894 3038	75	-5 47E-04	75	3 16E-05	75	6 08E-07
6	15	0.0751	13	1077.3030	15	J.7/L-04	15	J.10L-0J	15	0.00L-07
	75.5	-0.0943	75.5	1894 3038	75.5	-5.75E-04	75.5	3.16F-05	75.5	6.08F-07
	12 73 5	-0.0933	73 5	1840 1171	12 73 5	-0.39E-04	73 5	2.96E-03	73 5	5.04E-07
	70.5	-0.0923	70.5	1787 00/1	70.3	-0.03E-04	70.3	2.09E-03	70.5	5.75E-07
	09 70 5	-0.0913	09 70 5	1083.8/02	09 70 5	-/.23E-04	09 70 5	2.81E-05	09 70 5	5.02E-07
	60/.5	-0.0902	60/.5	1692 9762	07.3 60	-/.0/E-04	07.3 60	2.72E-05	07.5	5.51E-07
	60 67 5	-0.089	67 5	1584.0/93	60 67 5	-8.0/E-04	60 67 5	2.64E-05	67.5	5.40E-07
	64.5	-0.08//	64.5	1536.4822	64.5	-8.46E-04	64.5	2.56E-05	64.5	5.30E-07
	63	-0.0864	63	1489.1817	63	-8.84E-04	63	2.48E-05	63	5.20E-07
	61.5	-0.0851	61.5	1442.7502	61.5	-9.20E-04	61.5	2.40E-05	61.5	5.11E-07
	60	-0.0837	60	1397.1606	60	-9.56E-04	60	2.33E-05	60	5.02E-07
5										
	60	-0.0837	60	1397.1606	60	-9.56E-04	60	2.33E-05	60	5.02E-07
	58.5	-0.0822	58.5	1352.3864	58.5	-9.90E-04	58.5	2.25E-05	58.5	4.93E-07
	57	-0.0807	57	1308.4012	57	-1.02E-03	57	2.18E-05	57	4.84E-07
	55.5	-0.0792	55.5	1265.1796	55.5	-1.06E-03	55.5	2.11E-05	55.5	4.76E-07
	54	-0.0776	54	1222.6963	54	-1.09E-03	54	2.04E-05	54	4.68E-07
	52.5	-0.0759	52.5	1180.9264	52.5	-1.12E-03	52.5	1.97E-05	52.5	4.60E-07
	51	-0.0742	51	1139.8457	51	-1.15E-03	51	1.90E-05	51	4.53E-07

(continued) Table of Output for Graphics in Ex. 5.1

Maximum Twist Angle

			1	able of	Stress	es. ex. 5	.3			
		PI	ROPER	TIES FO	OR SF	PREADS	HEET	Γ		
			G =	11200	ksi					
			tw =	0 34	in					
			+f -	0.56	in					
			น –	0.50	111					
			F =	29000	KS1					
			S.wl	33	in^4					
			W.no	23.6	in^2					
	S	FRESSES	COMF	PUTED	FRON	A BMTC	RSW	OUTPU	Т	
				Pure t	orsion	shear		Warp	ing st	resses
				stress		stress		axial		shear
Elem	Ζ	θ	Ζ	web	Ζ	flange	Ζ	flange	Ζ	flange
1										
	0	0	0	-6.11	0	-10.06	0	0.000	0	-0.5699
	1.5	-0.0024	1.5	-6.11	1.5	-10.06	1.5	0.342	1.5	-0.5701
	3	-0.0048	3	-6.10	3	-10.05	3	0.685	3	-0.5706
	4.5	-0.0072	4.5	-6.10	4.5	-10.04	4.5	1.028	4.5	-0.5715
	6	-0.0096	6	-6.09	6	-10.02	6	1.372	6	-0.5727
	7.5	-0.012	7.5	-6.07	7.5	-10.00	7.5	1.716	7.5	-0.5742
	9	-0.0144	9	-6.06	9	-9.98	9	2.061	9	-0.5759
	10.5	-0.0168	10.5	-6.04	10.5	-9.95	10.5	2.408	10.5	-0.5781
	12	-0.0192	12	-6.02	12	-9.91	12	2.756	12	-0.5807
	13.5	-0.0215	13.5	-5.99	13.5	-9.87	13.5	3.106	13.5	-0.5834
	15	-0.0239	15	-5.97	15	-9.83	15	3.458	15	-0.5867
2				0.00		0.00		0.000		0.0000
	15	-0.0239	15	-5.97	15	-9.83	15	3.458	15	-0.5867
	16.5	-0.0262	16.5	-5.94	16.5	-9.78	16.5	3.811	16.5	-0.5903
	18	-0.0286	18	-5.90	18	-9.72	18	4.167	18	-0.5940
	19.5	-0.0309	19.5	-5.87	19.5	-9.67	19.5	4.525	19.5	-0.5983
	21	-0.0332	21	-5.83	21	-9.60	21	4.885	21	-0.6029
	22.5	-0.0355	22.5	-5.78	22.5	-9.53	22.5	5.249	22.5	-0.6079
	24	-0.0377	24	-5.74	24	-9.45	24	5.616	24	-0.6132
	25.5	-0.04	25.5	-5.69	25.5	-9.37	25.5	5.986	25.5	-0.6188
	27	-0.0422	27	-5.64	27	-9.29	27	6.359	27	-0.6248
	28.5	-0.0444	28.5	-5.59	28.5	-9.20	28.5	6.737	28.5	-0.6311
	30	-0.0466	30	-5.53	30	-9.10	30	7.118	30	-0.6378
3				0.00		0.00		0.000		0.0000
	30	-0.0466	30	-5.53	30	-9.10	30	7.118	30	-0.6379
	31.5	-0.0488	31.5	-5.46	31.5	-9.00	31.5	7.501	31.5	-0.6449
	33	-0.0509	33	-5.40	33	-8.90	33	7.891	33	-0.6523
1	34.5	-0.053	34.5	-5.34	34.5	-8.79	34.5	8.288	34.5	-0.6602

			\[,						
	36	-0.0551	36	-5.26	36	-8.67	36	8.685	36	-0.6685
	37.5	-0.0572	37.5	-5.19	37.5	-8.55	37.5	9.089	37.5	-0.6771
	39	-0.0592	39	-5.11	39	-8.42	39	9.499	39	-0.6861
	40.5	-0.0612	40.5	-5.03	40.5	-8.29	40.5	9.917	40.5	-0.6955
	42	-0.0632	42	-4.95	42	-8.15	42	10.334	42	-0.7054
	43.5	-0.0651	43.5	-4.86	43.5	-8.00	43.5	10.759	43.5	-0.7157
4	45	-0.067	45	-4.77	45	-7.85	45	11.197	45	-0.7265
	46.5	-0.0689	46.5	-4.67	46.5	-7.70	46.5	11.635	46.5	-0.7374
	48	-0.0707	48	-4.57	48	-7.53	48	12.080	48	-0.7489
	49.5	-0.0725	49.5	-4.47	49.5	-7.36	49.5	12.531	49.5	-0.7608
	51	-0.0742	51	-4.36	51	-7.19	51	12.997	51	-0.7733
	52.5	-0.0759	52.5	-4.25	52.5	-7.01	52.5	13.462	52.5	-0.7861
	54	-0.0776	54	-4.14	54	-6.82	54	13.941	54	-0.7994
	55.5	-0.0792	55.5	-4.02	55.5	-6.62	55.5	14.427	55.5	-0.8133
	57	-0.0807	57	-3.90	57	-6.42	57	14.920	57	-0.8275
	58.5	-0.0822	58.5	-3.77	58.5	-6.21	58.5	15.420	58.5	-0.8422
	60	-0.0837	60	-3.64	60	-6.00	60	15.926	60	-0.8574
5				0.00		0.00		0.000		0.0000
	60	-0.0837	60	-3.64	60	-6.00	60	15.926	60	-0.8575
	61.5	-0.0851	61.5	-3.50	61.5	-5.77	61.5	16.446	61.5	-0.8731
	63	-0.0864	63	-3.37	63	-5.54	63	16.980	63	-0.8893
	64.5	-0.0877	64.5	-3.22	64.5	-5.31	64.5	17.521	64.5	-0.9061
	66	-0.089	66	-3.07	66	-5.06	66	18.068	66	-0.9233
	67.5	-0.0902	67.5	-2.92	67.5	-4.81	67.5	18.629	67.5	-0.9413
	69	-0.0913	69	-2.76	69	-4.55	69	19.197	69	-0.9596
	70.5	-0.0923	70.5	-2.60	70.5	-4.28	70.5	19.779	70.5	-0.9785
	72	-0.0933	72	-2.43	72	-4.01	72	20.375	72	-0.9980
	73.5	-0.0943	73.5	-2.26	73.5	-3.72	73.5	20.977	73.5	-1.0180
	75	-0.0951	75	-2.08	75	-3.43	75	21.600	75	-1.0387
6				0.00		0.00		0.000		0.0000
	75	-0.0951	75	-2.08	75	-3.43	75	21.600	75	-1.0389
	76.5	-0.0959	76.5	-1.90	76.5	-3.13	76.5	22.229	76.5	-1.0600
	78	-0.0966	78	-1.71	78	-2.82	78	22.873	78	-1.0819
	79.5	-0.0972	79.5	-1.52	79.5	-2.50	79.5	23.530	79.5	-1.1045
	81	-0.0978	81	-1.32	81	-2.17	81	24.200	81	-1.1277
	82.5	-0.0983	82.5	-1.11	82.5	-1.83	82.5	24.885	82.5	-1.1515
	84	-0.0987	84	-0.90	84	-1.49	84	25.583	84	-1.1761
	85.5	-0.099	85.5	-0.69	85.5	-1.13	85.5	26.295	85.5	-1.2012
	87	-0.0992	87	-0.46	87	-0.76	87	27.027	87	-1.2272
	88.5	-0.0994	88.5	-0.23	88.5	-0.39	88.5	27.773	88.5	-1.2537
	90	-0.0994	90	0.00	90	0.00	90	28.533	90	-1.2808

(continued) Table of Stresses. Ex. 5.5

APPENDIX E

AISC-DG9-EXAMPLE 5.4

This material corresponds to the input model, input data, input forms, figures of output data with checks in notepad version, and excel processed output data and charts. An unsuccessful EBC model used before convergence study is presented. Charts are presented containing both partial and combined tresses along interest points of the beam and cross section profile. Again, the asymptotic behavior of the thin-walled beam elastic line is successfully shown in the charts, which evidences the efficiency of the high order finite element used by BMTORSWP.

Unsuccessful EBC Model Used Before Convergence Study

One Span between Consecutive Loads or Restraints and 3 FE in Spans

Input Notepad, Ex. 5.4 DG9

TWB Cross Section and Interest Points along Beam

Input Form, Right Side, Ex. 5.4 DG9

المستشارات

www.manaraa.com

540UT YOU ARE USING COMPUTER PROGRAM BMTORSW, DEVELOPED BY DR. BERNARDO DESCHAPELLES INPUT DATA FILE NAME IS = 54b.txt OUTPUT FILE NAME IS = 54bout.txt STORAGE FILE FOR POST-PROCESSING WITH EXCEL = 54bgrf.grf _____ AISC Design Guide 9, Ex. 5.4 modulus of elasticity of the material = 29000. k/ft2 ELEM nodes inertia length distrib. load AXIAL SOIL NORMAL MODULUS,Ksf angle j ft.4 ft 3****** 22.50 at j LOAD 0.000******* at i 1st END 2nd END rad 0.000 0.0 0.0 0.000 00 1 5****** 22.50 0.000 0.000******* 0.000 00 2 0.0 0.0 3 7****** 22.50 0.000****** 3 0.000 0.0 0.0 0.000 00 , 9******* 22.50 0.000******* 4 7 0.000 0.000 00 0.0 0.0 11******* 20.00 0.000******* 0.000 0.000 00 5 9 0.0 0.0 0.000****** 13******* 20.00 15****** 20.00 6 0.000 00 11 0.000 0.0 0.0 0.000******* 7 13 0.000 0.0 0.0 0.000 00 0.000******* 17****** 20.00 0.000 8 15 0.0 0.0 0.000 00 0.000****** 19******* 20.00 9 0.000 00 17 0.000 0.0 0.0 0.000****** 21******* 20.00 0.000 10 0.000 00 19 0.0 0.0 0.000******* 21 23 23***** 22.50 0.000 11 0.0 0.0 0.000 00 0.000****** 25******* 22.50 27****** 22.50 12 0.000 00 0.000 0.0 0.0 0.000******* 13 25 0.000 0.000 00 0.0 0.0 0.000******* 29******* 22.50 0.000 0.000 00 14 27 0.0 0.0

 INPUT
 DATA
 RELATED
 TO
 THE
 2
 SUPPORTS
 KX=KY=KZ restrained at Node 1

 2
 1
 1
 1
 029
 0
 1
 0
 KY restrained at Node 29

"KY restrained at Node 29 INPUT OF NODAL FORCES RELATED TO GLOBAL AXIS 2 2 9 930.00211260.00 1 ITERATIONS FINAL SOLUTION FOUND AFTER Output of nodal displacements in reference to global axes node displ. displ. displ. node displ. displ. displ. along'y or nonn2 along y or nonn2 around z along x along x around z or nonn 3 or nonn1 or nonn 3 or nonn1 1 0.0000E+00 0.0000E+00 0.3696E-03 2 0.0000E+00 0.4140E-02 0.6878E-03 3 0.0000E+00 0.8247E-02 0.3605E-03 4 0.0000E+00 0.1222E-01 0.6535E-03 5 0.0000E+00 0.1608E-01 0.3328E-03 6 0.0000E+00 0.1967E-01 0.5836E-03 7 0.0000E+00 0.2308E-01 0.2856E-03 8 0.0000E+00 0.2605E-01 0.4755E-03 9 0.0000E+00 0.2877E-01 0.2171E-03 10 0.0000E+00 0.3071E-01 0.3035E-03 11 0.0000E+00 0.3242E-01 0.1476E-03 Page 1

Page 1, Output Notepad, AISC Ex 5.4

	540UT	
12 0 0000 00 0 24600 01 0 00110 04	12 0.0000E+00	0.3367E-01 0.1896E-03
13 0.0000E+00 0.3469E-01 0.8011E-04	14 0.0000E+00	0.3527E-01 0.7735E-04
15 0.0000E+00 0.3562E-01 0.1250E-04	16 0.0000E+00	0.3552E-01 -0.3672E-04
17 0.0000E+00 0.3518E-01 -0.5717E-04	18 0.0000E+00	0.3437E-01 -0.1559E-03
19 0.0000E+00 0.3331E-01 -0.1310E-03	20 0.0000E+00	0.3174E-01 -0.2837E-03
21 0.0000E+00 0.2990E-01 -0.2110E-03	22 0.0000E+00	0.2720E-01 -0.4765E-03
23 0.0000E+00 0.2419E-01 -0.2919E-03	24 0.0000E+00	0.2068E-01 -0.6042E-03
25 0.0000E+00 0.1695E-01 -0.3477E-03	26 0.0000E+00	0.1290E-01 -0.6867E-03
27 0.0000E+00 0.8719E-02 -0.3803E-03	28 0.0000E+00	0.4380E-02 -0.7272E-03
29 0.0000E+00 0.0000E+00 -0.3911E-03		
OUTPUT OF SOIL REACTIONS, STRESSES	AND TRANSVERSE D	ISPLACEMENTS
NODE 1 DISPLACEMENTS IN INCL NODE 1 0.00000E+00 NODE 2 0.00000E+00 NODE 3 0.00000E+00	0.00000E+0 0.41404E-0 0.82468E-0	0.36955E-03 0.68780E-03 2.0.36045E-03
FORCES ACTING ALONG THE 9 DOF NODE 1 0.00000E+00	-0.10290E+0	4 -0.14755E-08
NODE 2 0.0000E+00	0 367385-0	0 0 11404E_07
NODE 3 0.00000E+00	0.10290E+0	4 -0.13270E+05
NODE 3 0.00000E+00 ELEMENT 1, FROM NODE 1, TO NODE 3 -	0.10290E+0 LENGTH = 22.50 f	t
NODE 3 0.00000E+00 ELEMENT 1, FROM NODE 1, TO NODE 3 - left half of span, at tenth points of 1 span span span span	0.10290E+0 LENGTH = 22.50 f ength span s	4 -0.13270E+05
NODE 3 0.00000E+00 ELEMENT 1, FROM NODE 1, TO NODE 3 left half of span, at tenth points of 1 span span span 0.0 0.1 0.2 soil,k/ft 0.0000 0.000	0.10290E+0 LENGTH = 22.50 f ength span s 0.3 0.4 0.000 0.	4 -0.13270E+05 t pan span 0.5 000 0.000
NODE 3 0.00000E+00 ELEMENT 1, FROM NODE 1, TO NODE 3 - left half of span, at tenth points of 1 span span span 0.0 0.1 0.2 soil,k/ft 0.000 -1029.00 -1029.00 shear,k -1029.00 -1029.00 -1029.00 bmom,kft 0.00 -1318.87 -2638.23	0.10290E+0 LENGTH = 22.50 f ength span s 0.3 0.4 0.000 0. -1029.00 -1029 -3958.57 -5280	4 -0.13270E+05 t 0.5 000 0.000 .00 -1029.00 .37 -6604.14
NODE 3 0.00000E+00 ELEMENT 1, FROM NODE 1, TO NODE 3 - left half of span, at tenth points of 1 span span span 0.0 0.1 0.2 soil,k/ft 0.000 0.000 0.000 shear,k -1029.00 -1029.00 0.00 0.1318.87 -2638.23 0.00000 0.00083 0.00166 axial,k 0.00 AT 1st END and	0.10290E+0 LENGTH = 22.50 f ength span s 0.3 0.4 0.000 0. -1029.00 -1029 -3958.57 -5280 0.00249 0.00 0.00 AT 2nd END	yan span 0.5 000 0.000 .00 -1029.00 .37 -6604.14 332 0.00415
NODE 3 0.000000E+00 ELEMENT 1, FROM NODE 1, TO NODE 3 left half of span, at tenth points of 1 span span span soil,k/ft 0.000 0.000 0.000 shear,k -1029.00 -1029.00 -1029.00 bmom,kft 0.000 0.00083 0.00166 axial,k 0.00 AT 1st END and right half of span, at tenth points of 1 span span	0.10290E+0 LENGTH = 22.50 f ength span s 0.3 0.4 0.000 0. -1029.00 -1029 -3958.57 -5280 0.00249 0.00 0.00 AT 2nd END ength span s	4 -0.13270E+05 t pan span 0.5 000 0.000 .00 -1029.00 .37 -6604.14 332 0.00415 pan span
NODE 3 0.00000E+00 ELEMENT 1, FROM NODE 1, TO NODE 3 - left half of span, at tenth points of 1 span span span 0.0 0.1 0.2 soil,k/ft 0.000 0.000 0.000 shear,k -1029.00 -1029.00 bmom,kft 0.00 -1029.00 -1029.00 0.000 0.1318.87 -2638.23 0.00000 0.00083 0.00166 axial,k 0.00 AT 1st END and right half of span, at tenth points of 1 span span span 0.5 0.6 0.7 soil,k/ft 0.000 0.000	0.10290E+0 LENGTH = 22.50 f ength span s 0.3 0.4 0.000 -1029 -3958.57 -5280 0.00249 0.00 0.00 AT 2nd END ength span s 0.8 0.9 0.000 0.	4 -0.13270E+05 t pan span 0.5 000 0.000 .00 -1029.00 .37 -6604.14 332 0.00415 pan span 1.0 000 0.000
NODE 3 0.00000E+00 ELEMENT 1, FROM NODE 1, TO NODE 3 - left half of span, at tenth points of 1 span span span 0.0 0.1 0.2 soil,k/ft 0.000 -1029.00 -1029.00 bmom,kft tdisp,ft 0.00 AT 1st END and right half of span, at tenth points of 1 span span span 0.0 0.1 0.2 0.000 0.000 0.000 -1029.00 -1029.00 0.00083 0.00166 axial,k 0.00 AT 1st END and right half of span, at tenth points of 1 span span span 0.5 0.6 0.7 soil,k/ft 0.000 0.000 shear,k -1029.00 -1029.00 bmom,kft -6604.14 -7930.35 -9259.51	0.10290E+0 LENGTH = 22.50 f ength span s 0.3 0.4 0.000 0. -1029.00 -1029 -3958.57 -5280 0.00249 0.00 0.00 AT 2nd END ength span s 0.8 0.9 0.000 0. -1029.00 -1029 -10592.10 -11928	4 -0.13270E+05 t pan span 0.5 000 0.000 .00 -1029.00 .37 -6604.14 332 0.00415 pan span 1.0 000 0.000 .00 -1029.00 .62 -13269.57
NODE 3 0.00000E+00 ELEMENT 1, FROM NODE 1, TO NODE 3 - left half of span, at tenth points of 1 span span span 0.0 0.1 0.2 soil,k/ft 0.000 -1029.00 -1029.00 bmom,kft -1029.00 -1029.00 -1029.00 0.000 0.118.87 -2638.23 0.00000 0.00083 0.00166 axial,k 0.00 AT 1st END and right half of span, at tenth points of 1 span span span 0.5 0.6 0.7 soil,k/ft 0.000 -1029.00 -1029.00 bmom,kft -6604.14 -7930.35 -9259.51 tdisp,ft 0.00415 0.00497 0.00580 axial,k 0.00 AT 1st END and	0.10290E+0 0.10290E+0 LENGTH = 22.50 f ength span s 0.3 0.4 0.000 0. -1029.00 -1029 -3958.57 -5280 0.00249 0.00 0.00 AT 2nd END ength span s 0.8 0.9 0.000 -1029 -10592.10 -11928 0.0062 0.00 0.00 AT 2nd END	A -0.13270E+05 t pan span 0.5 000 0.000 .00 -1029.00 .37 -6604.14 332 0.00415 pan span 1.0 000 0.000 .00 -1029.00 .62 -13269.57 743 0.00825
NODE 3 0.00000E+00 ELEMENT 1, FROM NODE 1, TO NODE 3 - left half of span, at tenth points of 1 span span span 0.0 0.1 0.2 soil,k/ft 0.000 -1029.00 -1029.00 bmom,kft 0.00 -1318.87 -2638.23 0.00000 0.00083 0.00166 axial,k 0.00 AT 1st END and right half of span, at tenth points of 1 span span span 0.5 0.6 0.7 soil,k/ft 0.000 0.000 0.000 shear,k -1029.00 -1029.00 -1029.00 bmom,kft -6604.14 -7930.35 -9259.51 tdisp,ft 0.00415 0.00497 0.00580 axial,k 0.00 AT 1st END and ELEMENT 2 DISPLACEMENTS IN INCT	0.10290E+0 0.10290E+0 LENGTH = 22.50 f ength span s 0.3 0.4 0.000 0. -1029.00 -1029 -3958.57 -5280 0.00249 0.00 0.00 AT 2nd END ength span s 0.8 0.9 0.000 0. -1029.00 -1029 -10592.10 -11928 0.00662 0.00 0.00 AT 2nd END 	5 - 0.117570E+05 t pan span 0.5 000 0.000 .00 -1029.00 .37 -6604.14 332 0.00415 pan span 1.0 000 0.000 .00 -1029.00 .62 -13269.57 743 0.00825
NODE 3 0.00000E+00 ELEMENT 1, FROM NODE 1, TO NODE 3 left half of span, at tenth points of 1 span span span soil,k/ft 0.00 0.1 0.2 soil,k/ft 0.000 -1029.00 -1029.00 shear,k -1029.00 -1029.00 -1029.00 bmom,kft 0.00 0.00083 0.00166 axial,k 0.000 0.000 0.000 right half of span,at tenth points of 1 span span span span span span 0.5 0.6 0.7 soil,k/ft 0.000 0.000 0.000 shear,k -1029.00 -1029.00 -1029.00 bmom,kft -6604.14 -7930.35 -9259.51 tdisp,ft 0.00415 0.00497 0.00580 axial,k 0.00 AT 1st END and	0.10290E+0 LENGTH = 22.50 f ength span s 0.3 0.4 0.000 0. -1029.00 -1029 -3958.57 -5280 0.00249 0.00 0.00 AT 2nd END ength span s 0.8 0.9 0.000 0. -1029.00 -1029 -10592.10 -11928 0.00662 0.00 0.00 AT 2nd END 	5 -0.117570E+05 4 -0.13270E+05 t pan span 0.5 000 0.000 .00 -1029.00 .37 -6604.14 332 0.00415 pan span 1.0 000 0.000 .00 -1029.00 .62 -13269.57 743 0.00825
NODE 3 0.00000E+00 ELEMENT 1, FROM NODE 1, TO NODE 3 - left half of span, at tenth points of 1 span span span 0.0 0.1 0.2 soil,k/ft 0.000 -1029.00 -1029.00 bmom,kft -1029.00 -1029.00 -1029.00 0.00000 0.00083 0.00166 axial,k 0.00 AT 1st END and right half of span, at tenth points of 1 span span span 0.5 0.6 0.7 soil,k/ft 0.000 0.000 0.000 shear,k -1029.00 -1029.00 -1029.00 bmom,kft -6604.14 -7930.35 -9259.51 tdisp,ft 0.00415 0.00497 0.00580 axial,k 0.00 AT 1st END and 	0.10290E+0 LENGTH = 22.50 f ength span s 0.3 0.4 0.000 0. -1029.00 -1029 -3958.57 -5280 0.00249 0.00 0.00 AT 2nd END ength span s 0.8 0.9 0.000 0. -1029.00 -1029 -10592.10 -11928 0.00662 0.00 0.00 AT 2nd END 	<pre>b .11494E-07 4 -0.13270E+05 t pan span 0.5 000 0.000 .00 -1029.00 .37 -6604.14 332 0.00415 pan span 1.0 000 0.000 .00 -1029.00 .62 -13269.57 743 0.00825</pre>

Page 2, Output Notepad, AISC Ex 5.4

540UT 0.82468E-02 0.00000E+00 0.36045E-03 NODE 3 0.65349E-03 4 0.12216E-01 NODE 0.00000E+00 NODE 5 0.00000E+00 0.16082E-01 0.33282E-03 FORCES ACTING ALONG THE 9 DOF 0.0000E+00 -0.10290E+04 0.13270E+05 NODE 3 4 -0.17447E-08 0.66930E-08 NODE 0.0000E+00 NODE 5 0.00000E+00 0.10290E+04 -0.27033E+05 ELEMENT 2, FROM NODE 3, TO NODE 5 - LENGTH = 22.50 ft left half of span, at tenth points of length span 0.2 span 0.3 span 0.4 span 0.1 span span 0.5 0.0 0.000 0.000 soil,k/ft 0.000 0.000 0.000 0.000 -1029.00 shear,k -1029.00 -1029.00 -1029.00 -1029.00 -1029.00bmom,kft -13269.57 -14615.43 -15966.72 -17323.93 -18687.57 -20058.14 tdisp,ft 0.00825 0.00906 0.00986 0.01066 0.01145 0.01224 0.00 AT 1st END and 0.00 AT 2nd END axial,k right half of span, at tenth points of length span 0.6 span 0.8 span 0.7 span 0.9 span span 1.0 0.5 0.000 0.000 0.000 0.000 0.000 soil,k/ft 0.000 -1029.00 shear.k -1029.00 -1029.00 -1029.00 -1029.00 -1029.00 bmom,kft -20058.14 -21436.15 -22822.11 -24216.54 -25619.95 -27032.86 tdisp,ft 0.01224 0.01302 0.01380 0.01457 0.01533 0.01608 0.00 AT 2nd END axial,k 0.00 AT 1st END and ELEMENT 3 DISPLACEMENTS IN INCIDENCES 5 6 7 0.00000E+00 0.16082E-01 0.00000E+00 0.19668E-01 0.33282E-03 NODE 5 6 0.58359E-03 NODE 0.00000E+00 0.23077E-01 NODE 7 0.28562E-03 FORCES ACTING ALONG THE 9 DOF NODE 5 0.00000E+00 -0.10290E+04 0.27033E+05 -0.72288E-09 -0.50648E-07 NODE 6 0.00000E+00 -0.41802E+05 NODE 7 0.00000E+00 0.10290E+04 ELEMENT 3, FROM NODE 5, TO NODE 7 - LENGTH = 22.50 ft left half of span, at tenth points of length 507] span 0.2 span span span span span 0.0 0.1 0.3 0.4 0.5 0.000 0.000 0.000 0.000 0.000 0.000 soil.k/ft sorr, k/rt 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 shear, k -1029.00 -1029.00 -1029.00 -1029.00 -1029.00 -1029.00 bmom, kft -27032.86 -28455.80 -29889.30 -31333.88 -32790.09 -34258.46 tdisp,ft 0.01683 0.01756 0.01829 0.01901 0.01971 axial.k 0.00 AT 1st END and 0.00 AT 2nd END right half of span, at tenth points of length span 0.8 span 0.7 span 0.6 span span span 0.5 0.9 1.0 0.000 0.000 0.000 0.000 0.000 soil.k/ft 0.000 shear,k -1029.00 -1029.00 -1029.00 -1029.00 -1029.00 -1029.00 bmom,kft -34258.46 -35739.54 -37233.87 -38742.02 -40264.53 -41801.99 tdisp,ft 0.01971 0.02041 0.02109 0.02177 0.02243 0.02308 0.00 AT 2nd END 0.00 AT 1st END and axial.k _____ ELEMENT 4 DISPLACEMENTS IN INCIDENCES 7 8 9 NODE 7 0.00000E+00 0.23077F-01 0.23077E-01 0.00000E+00 NODE 0.28562E-03 NODE 8 0.00000E+00 0.26054E-01 0.47550E-03 9 0.0000E+00 0.28775E-01 0.21710E-03 NODE Page 3 (-Di + Dj)* GJ + Vj*L = Mj-Mi, where GJ=1198400 -0.01608+0.02308)1198400 -1029*22.5= 8388.8-23152.5=14763.7 -41801.99+27032.86 =-14769.13 OK

Page 3, Output Notepad, AISC Ex 5.4

540UT FORCES ACTING ALONG THE 9 DOF 0.00000E+00 -0.10290E+04 0.41802E+05 NODE 0.64662E-07 -0.63679E-09 8 0.00000E+00 NODE 0.10290E+04 0.00000E+00 NODE 9 -0.58126E+05 ELEMENT 4, FROM NODE 7, TO NODE 9 - LENGTH = 22.50 ft Warp. Torque Bimornent left half of span, at tenth points of length span 0.4 span 0.3 span span 0.1 0.2 span span 0.0 0.5 0.000 0.000 0.000 0.000 soil,k/ft 0.000 0.000 shear,k -1029.00 -1029.00 -1029.00 -1029.00 -1029.00 -1029.00 bmom,kft -41801.99 -43354.95 -44923.99 -46509.69 -48112.65 -49733.45 tdisp,ft 0.02308 0.02371 0.02434 0.02494 0.02554 0.02612 0.00 AT 2nd END 0.00 AT 1st END and axial,k right half of span, at tenth points of length span 0.8 span 0.9 span span span 0.6 0.7 span 0.5 1.0 soil,k/ft 0.000 0.000 0.000 0.000 0.000 0 000 shear,k -1029.00 -1029.00 -1029.00 -1029.00 -1029.00 -1029.00 bmom, kft -49733.45 -51372.71 -53031.01 -54708.99 -56407.27 -58126.46 tdisp,ft 0.02612 0.02668 0.02723 0.02776 0.02828 0.02877 axial.k 0.00 AT 1st END and 0.00 AT 2nd END 0.00 AT 2nd END axial.k 0.00 AT 1st END and _____ ELEMENT 5 DISPLACEMENTS IN INCIDENCES 9 10 11 0.00000E+00 0.28775E-01 NODE 9 0.21710E-03 0.30347E-03 NODE 10 0.30712E-01 0.00000E+00 NODE 11 0.00000E+00 0.32417E-01 0.14765E-03 FORCES ACTING ALONG THE 9 DOF NODE 9 NODE 10 NODE 11 0.00000E+00 -0.99000E+02 0.58126E+05 0.99470E-09 0.00000E+00 0.23257E-07 0.00000E+00 0.99000E+02 -0.55741E+05 ELEMENT 5, FROM NODE 9, TO NODE 11 - LENGTH = 20.00 ft left half of span, at tenth points of length span 0.1 span 0.2 span 0.3 span 0.4 span span 0.0 0.5 0.000 0.000 0.000 0.000 soil.k/ft 0.000 0.000 shear, k -99.00 -99.00 -99.00 -99.00 -99.00 -99.00 bmom,kft -58126.46 -57812.63 -57515.74 -57235.70 -56972.45 -56725.89 tdisp,ft 0.02877 0.02920 0.02961 0.03001 0.03040 0.03077 0.00 AT 1st END and 0.00 AT 2nd END axial.k right half of span, at tenth points of length span 0.6 span 0.7 span 0.8 span 0.5 span 0.9 span 1.0 -99.00 -00 0.000 0.000 0.000 0.000 soil,k/ft 0.000 shear,k -99.00 -99.00 -99.00 -99.00 bmom,kft -56725.89 -56495.95 -56282.57 -56085.69 -55905.25 -55741.19 tdisp,ft 0.03077 0.03113 0.03147 0.03180 0.03212 0.03242 0.00 AT 1st END and 0.00 AT 2nd END axial.k
 ELEMENT
 6
 DISPLACEMENTS IN INCIDENCES
 11
 12
 13

 NODE
 11
 0.00000E+00
 0.32417E-01
 0.00000E+00 0.14765E-03 NODE 12 0.0000E+00 0.33668E-01 0.18965E-03 NODE 13 0.00000E+00 0.34693E-01 0.80110E-04 FORCES ACTING ALONG THE 9 DOF NODE 11 NODE 12 0.00000E+00 -0.99000E+02 0.55741E+05 0.00000E+00 0.72169E-08 -0.27496E-07 $(-Di + Dj)^* GJ + Vj^*L = Mj-Mi$, where GJ=1198400 Page 4 -0.02877+0.03242)*1198400-99*20=4374.16-1980=2394.16 -55741.19+58126.46=2385.27 OK

Page 4, Output Notepad, AISC Ex 5.4

540UT 0.00000E+00 0.99000E+02 -0.54994E+05 NODE 13 ELEMENT 6, FROM NODE 11, TO NODE 13 - LENGTH = 20.00 ft left half of span, at tenth points of length span 0.2 span 0.3 span span span span 0.0 0.1 0.4 0.5 soil,k/ft 0.000 0.000 0.000 0.000 0.000 0.000 shear,k -99.00 -99.00 -99.00 -99.00 -99.00 -99.00 bmom,kft -55741.19 -55593.47 -55462.04 -55346.87 -55247.92 -55165.16 tdisp,ft 0.03242 0.03271 0.03298 0.03324 0.03349 0.03372 0.000 0.000 0.00 AT 1st END and 0.00 AT 2nd END axial,k right half of span, at tenth points of length span 1.0 span 0.5 span 0.8 span span 0.6 0.7 span 0.9 0.000 0.000 -99.00 -99.00 0.000 0.000 -99.00 -99.00 0.000 soil,k/ft 0.000 shear.k -99.00 bmom,kft -55165.16 -55098.57 -55048.13 -55013.82 -54995.63 -54993.57 tdisp,ft 0.03372 0.03394 0.03415 0.03435 0.03453 0.03469 0.00 AT 2nd END 0.00 AT 1st END and axial,k _____
 7
 DISPLACEMENTS IN INCIDENCES
 13
 14
 15

 3
 0.00000E+00
 0.34693E-01
 0.80110E
 ELEMENT 13 NODE 0.80110E-04 NODE 14 NODE 15 0.35270E-01 0.00000E+00 0.77350E-04 0.12498E-04 0.35621E-01 0.00000E+00 FORCES ACTING ALONG THE 9 DOF NODE 13 NODE 14 0.00000E+00 -0.99000E+02 0.54994E+05 0.00000E+00 -0.81297E-08 0.37656E-07 NODE 15 0.00000E+00 0.99000E+02 -0.55862E+05 ELEMENT 7, FROM NODE 13, TO NODE 15 - LENGTH = 20.00 ft left half of span, at tenth points of length 507 1 span 0.2 span 0.4 span 0.3 span span span 0.5 0.0 0.1 0.000 0.000 0.000 0.000 0.000 soil,k/ft 0.000 shear,k -99.00 -99.00 -99.00 -99.00 -99.00 -99.00 bmom,kft -54993.57 -55007.62 -55037.79 -55084.10 -55146.55 -55225.16 tdisp,ft 0.03469 0.03485 0.03499 0.03511 0.03523 0.03533 0.00 AT 1st END and 0.00 AT 2nd END axial.k right half of span, at tenth points of length span 0.6 span 0.7 span 9 0.8 0.9 span span span 0.5 1.0 0.000 0.000 0.000 0.000 0.000 soil,k/ft 0.000 shear,k -99.00 -99.00 -99.00 -99.00 -99.00 bmom,kft -55225.16 -55319.96 -55430.97 -55558.22 -55701.76 -55861.63 tdisp,ft 0.03533 0.03541 0.03548 0.03554 0.03559 0.03562 0.00 AT 2nd END 0.00 AT 1st END and axial.k _____ ELEMENT 8 DISPLACEMENTS IN INCIDENCES 15 16 17 NODE 15 NODE 16 0.35621E-01 0.00000E+00 0.12498E-04 0.35516E-01 0.00000E+00 -0.36718E-04 NODE 17 -0.57173E-04 0.00000E+00 0.35180E-01 FORCES ACTING ALONG THE 9 DOF NODE 15 NODE 16 0.00000E+00 -0.99000E+02 0.55862E+05 0.00000E+00 -0.11674E-08 -0.73443E-07 NODE 17 0.00000E+00 0.99000E+02 -0.58371E+05 ELEMENT 8, FROM NODE 15, TO NODE 17 - LENGTH = 20.00 ft Page 5

Page 5, Output Notepad, AISC Ex 5.4

540UT left half of span, at tenth points of length span 0.3 span 0.4 span 0.2 span span span 0.5 0.0 0.1 0.000 soil,k/ft 0.000 0.000 0.000 0.000 0.000 -99.00 -99.00 -99.00 -99.00 shear,k -99.00 -99.00 bmom,kft -55861.63 -56037.87 -56230.53 -56439.67 -56665.36 -56907.65 tdisp,ft 0.03562 0.03564 0.03564 0.03563 0.03561 0.03557 0.00 AT 2nd END axial,k 0.00 AT 1st END and right half of span, at tenth points of length span 0.7 span span span span span 0.5 0.6 0.8 0.9 ' 1.0 0.000 0.000 0.000 0.000 0.000 -99.00 soil.k/ft 0.000 shear,k -99.00 -99.00 -99.00 -99.00 -99.00 bmom,kft -56907.65 -57166.62 -57442.34 -57734.91 -58044.39 -58370.88 tdjsp,ft 0.03557 0.03552 0.03546 0.03538 0.03529 0.03518 axial k 0.00 AT 1st END and 0.00 AT 2nd END ELEMENT 9 DISPLACEMENTS IN INCIDENCES 17 18 19 NODE 17 0.00000E+00 0.35180E-01 -0.57173E-04 NODE 18 0.00000E+00 0.34366E-01 -0.15591E-03 0.00000E+00 -0.13095E-03 NODE 19 0.33307E-01 FORCES ACTING ALONG THE 9 DOF NODE 17 0.00000E+00 -0.99000E+02 0.58371E+05 18 0.00000E+00 0.12084E-06 NODE 0.75810E-08 NODE 19 0.00000E+00 0.99000E+02 -0.62595E+05 ELEMENT 9, FROM NODE 17, TO NODE 19 - LENGTH = 20.00 ft left half of span, at tenth points of length span 0.2 span span span span span 0.0 0.1 0.3 0.4 0.5 0.000 soil,k/ft 0.000 0.000 0.000 0.000 0.000 -99.00 shear.k -99.00 -99.00 -99.00 -99.00 bmom,kft -58370.88 -58714.48 -59075.30 -59453.42 -59848.97 -60262.06 tdisp,ft 0.03518 0.03506 0.03492 0.03477 0.03461 0.03443 axial,k 0.00 AT 1st END and 0.00 AT 2nd END right half of span, at tenth points of length span 0.8 span 0.6 span 0.7 span 0.9 span span 0.5 1.0 0.000 0.000 0.000 0.000 0.000 0.000 soil,k/ft shear, k -99.00 -99.00 -99.00 -99.00 -99.00 -99.00 bmom,kft -60262.06 -60692.81 -61141.35 -61607.81 -62092.33 -62595.05 tdisp,ft 0.03443 0.03423 0.03402 0.03380 0.03356 0.03331 0.00 AT 1st END and 0.00 AT 2nd END axial,k ELEMENT 10 DISPLACEMENTS IN INCIDENCES 19 20 21 NODE 19 0.00000E+00 0.33307E-01 -0.13095E-03 20 21 0.00000E+00 0.31737E-01 -0.28373E-03 NODE NODE 0.00000E+00 0.29900E-01 -0.21100E-03 FORCES ACTING ALONG THE 9 DOF 0.00000E+00 NODE 19 -0.99000E+02 0.62595E+05 NODE 20 0.00000E+00 -0.78221E-08 0.13106E-06 0.00000E+00 0.99000E+02 -0.68658E+05 NODE 21 ELEMENT 10, FROM NODE 19, TO NODE 21 - LENGTH = 20.00 ft Warp. Torque Bimoment left half of span, at tenth points of length span span span span span span Page 6

Page 6, Output Notepad, AISC Ex 5.4

540UT 0.2 0.4 0.0 0.1 0.3 0.5 0.000 0.000 0.000 0.000 0.000 soil,k/ft 0.000 shear,k -99.00 -99.00 -99.00 -99.00 -99.00 -99.00 bmom,kft -62595.05 -63116.11 -63655.67 -64213.88 -64790.92 -65386.94 tdisp,ft 0.03331 0.03304 0.03275 0.03245 0.03214 0.03180 0.00 AT 1st END and 0.00 AT 2nd END axial.k right half of span, at tenth points of length span 0.5 span 0.7 span[°] 0.6 span span 0.8 0.9 span 1.0 0.000 0.000 0.000 -99.00 -99.00 0.000 0.000 -99.00 0.000 soil.k/ft shear,k -99.00 bmom,kft -65386.94 -66002.13 -66636.67 -67290.73 -67964.52 -68658.22 tdisp,ft 0.03180 0.03146 0.03109 0.03071 0.03031 0.02990 axial,k 0.00 AT 1st END and 0.00 AT 2nd END Warp. Torque Bimoment
 ELEMENT
 11
 DISPLACEMENTS IN INCIDENCES
 21
 22
 23

 NODE
 21
 0.00000E+00
 0.29900E-01
 -0.2110

 NODE
 22
 0.00000E+00
 0.37107-01
 -0.21100E-03 -0.47648E-03 NODE 22 NODE 23 23 0.00000E+00 0.24192E-01 -0.29194E-03 FORCES ACTING ALONG THE 9 DOF NODE 21 NODE 22 NODE 23 0.00000E+00 0.11610E+04 0.68658E+05 0.00000E+00 0.55354E-09 0.35221E-07 -0.49376E+05 0.00000E+00 -0.11610E+04 ELEMENT 11, FROM NODE 21, TO NODE 23 - LENGTH = 22.50 ft left half of span, at tenth points of length span 0.4 span 0.2 span 0.3 span span span 0.0 0.1 0.5 0.000 0.000 soil.k/ft 0.000 0.000 1161.00 1 0.000 0.000 shear,k 1161.00 1161.00 1161.00 1161.00 1161.00 bmom,kft -68658.22 -66627.53 -64621.55 -62639.54 -60680.77 -58744.51 tdisp,ft 0.02990 0.02941 0.02891 0.02838 0.02784 0.02727 0.00 AT 2nd END axial,k 0.00 AT 1st END and right half of span, at tenth points of length span span 0.8 0.9 span span span 0.5 0.6 0.7 span 1.0 soil,k/ft 0.000 0.000 0.000 0.000 0.000 0.000 1161.00 1161.00 1161.00 1161.00 1161.00 shear,k 1161.00 bmom,kft -58744.51 -56830.03 -54936.64 -53063.63 -51210.30 -49375.96 tdisp,ft 0.02727 0.02669 0.02609 0.02547 0.02484 0.02419 axial,k 0.00 AT 1st END and 0.00 AT 2nd END -----ELEMENT 12 DISPLACEMENTS IN INCIDENCES 23 24 25 NODE 23 0.00000E+00 0.24192E-01 -0.29194E-03 NODE 24 NODE 25 0.20676E-01 0.00000E+00 -0.60415E-03 0.00000E+00 0.16951E-01 -0.34769E-03 FORCES ACTING ALONG THE 9 DOF NODE 23 NODE 24 NODE 25 0.00000E+00 0.11610E+04 0.49376E+05 0.00000E+00 0.16209E-08 -0.21178E-07 0.00000E+00 -0.11610E+04 -0.31931E+05 ELEMENT 12, FROM NODE 23, TO NODE 25 - LENGTH = 22.50 ft left half of span, at tenth points of length span 0.3 span 0.2 0 span 0.4 span span span 0.0 0.1 0.5 soil,k/ft 0.000 0.000 1161.00 1161.00 0.000 0.000 0.000 0.000 1161.00 shear,k 1161.00 1161.00 1161.00 Page 7

Page 7, Output Notepad, AISC Ex 5.4

540UT bmom,kft -49375.96 -47559.94 -45761.57 -43980.16 -42215.08 -40465.65 tdisp,ft 0.02419 0.02353 0.02285 0.02216 0.02145 0.02073 0.00 AT 1st END and axial,k 0.00 AT 2nd END right half of span, at tenth points of length span 0.6 span 0.7 span : 0.8 0.9 span span span 0.5 1.0 0.000 0.000 0.000 0.000 1161.00 1161.00 1161.00 0.000 0.000 soil.k/ft 0.000 1161.00 shear,k 1161.00 1161.00 bmom,kft -40465.65 -38731.23 -37011.18 -35304.85 -33611.63 -31930.87 tdisp,ft 0.02073 0.02000 0.01925 0.01850 0.01773 0.01695 axial,k 0.00 AT 1st END and 0.00 AT 2nd END ELEMENT 13 DISPLACEMENTS IN INCIDENCES 25 26 27 NODE 25 0.00000E+00 0.16951E-01 NODE 26 0.00000E+00 0.12896E-01 NODE 27 0.00000E+00 0.87188F-02 -0.34769E-03 -0.68672E-03 -0.38033E-03 FORCES ACTING ALONG THE 9 DOF NODE 25 NODE 26 NODE 27 0.00000E+00 0.11610E+04 0.31931E+05 -0.15432E-07 0.00000E+00 0.97435E-09 0.00000E+00 -0.11610E+04 -0.15674E+05 ELEMENT 13, FROM NODE 25, TO NODE 27 - LENGTH = 22.50 ft left half of span, at tenth points of length span s 1 0.2 span 0.3 span span span span 0.1 0.4 0.5 0.0 soil,k/ft 0.000 0.000 0.000 0.000 0.000 1161.00 1161.00 1161.00 1161.00 1161.00 0.000 shear,k 1161.00 bmom,kft -31930.87 -30261.95 -28604.26 -26957.18 -25320.10 -23692.42 tdisp,ft 0.01695 0.01616 0.01537 0.01456 0.01375 0.01293 axial,k 0.00 AT 1st END and 0.00 AT 2nd END right half of span, at tenth points of length span 0.8 span span 0.6 0.7 span 0.9 span span 0.5 1.0 soil,k/ft 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 shear,k 1161.00 1160.00 1160.00 1160.00 1160.00 1160.00 1160.00 1160.00 1160.00 1160.00 1160.00 1160.00 1160.00 1160.00 1160.00 1160.00 1160.00 1160 0.00 AT 1st END and 0.00 AT 2nd END axial.k _____ ELEMENT 14 DISPLACEMENTS IN INCIDENCES 27 28 29 NODE 27 0.00000E+00 0 871885 03 0.00000E+00 0.87188E-02 -0.38033E-03 NODE 28 NODE 29 0.43796E-02 -0.72724E-03 0.00000E+00 0.00000E+00 0.00000E+00 -0.39108E-03 FORCES ACTING ALONG THE 9 DOF NODE 27 0.00000E+00 0.11610E+04 0.15674E+05 NODE 28 NODE 29 -0.33970E-09 0.00000E+00 -0.77334E-08 0.00000E+00 -0.11610E+04 -0.17972E-08 ELEMENT 14, FROM NODE 27, TO NODE 29 - LENGTH = 22.50 ft left half of span, at tenth points of length span span span span 0.1 0.2 0.3 span span 0.0 0.4 0.5 0.000 0.000 0.000 1161.00 1161.00 1161.00 soil,k/ft 0.000 0.000 0.000 shear,k 1161.00 1161.00 1161.00 bmom, kft -15673.84 -14089.93 -12511.25 -10937.21 -9367.23 tdisp,ft 0.00872 0.00786 0.00700 0.00613 0.00526 -7800.72 0.00439 0.00 AT 2nd END axial.k 0.00 AT 1st END and Page 8

Page 8, Output Notepad, AISC Ex 5.4

(-Di + Dj)* GJ + Vj*L = Mj-Mi, where GJ=1198400 (-0.00872 + 0)*1198400 + 1161*22.5 = 015673.84 540UT -10450.05 + 26122.5 = 15675.45 OK											
right half of span,at tenth points of length											
	span	span	span	span	span	span					
	0.5	0.6	0.7	0.8	0.9	1.0					
soil,k/ft	0.000	0.000	0.000	0.000	0.000	0.000					
shear, k	1161.00	1161.00	1161.00	1161.00	1161.00	1161.00					
bmom, kft	-7800.72	-6237.11	-4675.81	-3116.24	-1557.83	0.00					
tdisp,ft	0.00439	0.00351	0.00264	0.00176	0.00088	0.00000					
axial,k	0.00	AT 1st END	and	0.00 AT 2n	d end						

Last Page. Output Notepad. AISC Ex 5.4

Twist Angle for Ultimate Loads in the TWB

TWB Torque and BC Analogue Shear from BMTORSWP

TWB Bimoment and BC Analogue Moment from BMTORSWP

Twist Angle Derivative

Twist Angle 2nd Derivative

Twist Angle Third Derivative

St. Vt. Shear Stress in TWB Web

St. Vt. Shear Stress in TWB Flange

Warping Normal Stresses at TWB Flange

Warping Shear Stresses at TWB Flange

Location		0w	Фb	fun AF CO
Point D	flange web	-18.4	±26.6	-45.0 -45.0
Point E	flange web	0	0	<u>0</u>
Maximum			12 - No 11	-45.63 - -45.0

Discrepancy in Total Maximum Normal Stresses in Interest Points

Location		Tt	Tw	ть	fuv
Point D	flange web	-4.47 -2.24	-1.11 - -1.11	± 2.37 ±12.1	- 7.95 -14.3
Point E	flange web	- 8.75 -8.75 -4.37	-0.84 -0.87	± 2.37 ±12.1	-11.9 - -12.0 -16.5
Maximum		- 4.38 -			- <u>16.51</u> - 16.5

No Discrepancy in Total Maximum Shear Stresses in Interest Points

TWB Cross Section and Interest Points along Beam

Discrepancies on Maximum Twist Angle and Location

	вмто	RSW P						
Elem	Ζ	θ	Ζ	Moment	Ζ	θ'	Ζ	θ"
1								
	0	0.000E+00	0	0	0	3.696E-04	0	2.940E-13
	2.25	8.000E-04	2.25	-1318.87	2.25	3.695E-04	2.25	-8.064E-08
	4.5	1.700E-03	4.5	-2638.23	4.5	3.692E-04	4.5	-1.613E-07
	6.75	2.500E-03	6.75	-3958.57	6.75	3.687E-04	6.75	-2.420E-07
	9	3.300E-03	9	-5280.37	9	3.681E-04	9	-3.228E-07
	11.25	4.100E-03	11.25	-6604.14	11.25	3.673E-04	11.25	-4.038E-07
	13.5	5.000E-03	13.5	-7930.35	13.5	3.663E-04	13.5	-4.849E-07
	15.75	5.800E-03	15.75	-9259.51	15.75	3.651E-04	15.75	-5.661E-07
	18	6.600E-03	18	-10592.1	18	3.637E-04	18	-6.476E-07
	20.25	7.400E-03	20.25	-11928.6	20.25	3.622E-04	20.25	-7.293E-07
	22.5	8.200E-03	22.5	-13269.6	22.5	3.605E-04	22.5	-8.113E-07
2								
	22.5	8.200E-03	22.5	-13269.6	22.5	3.605E-04	22.5	-8.113E-07
	24.75	9.100E-03	24.75	-14615.4	24.75	3.585E-04	24.75	-8.936E-07
	27	9.900E-03	27	-15966.7	27	3.564E-04	27	-9.762E-07
	29.25	1.070E-02	29.25	-17323.9	29.25	3.541E-04	29.25	-1.059E-06
	31.5	1.150E-02	31.5	-18687.6	31.5	3.517E-04	31.5	-1.143E-06
	33.75	1.220E-02	33.75	-20058.1	33.75	3.490E-04	33.75	-1.226E-06
	36	1.300E-02	36	-21436.2	36	3.461E-04	36	-1.311E-06
	38.25	1.380E-02	38.25	-22822.1	38.25	3.431E-04	38.25	-1.395E-06
	40.5	1.460E-02	40.5	-24216.5	40.5	3.399E-04	40.5	-1.481E-06
	42.75	1.530E-02	42.75	-25620	42.75	3.364E-04	42.75	-1.566E-06
	45	1.610E-02	45	-27032.9	45	3.328E-04	45	-1.653E-06
3								
	45	1.610E-02	45	-27032.9	45	3.328E-04	45	-1.653E-06
	47.25	1.680E-02	47.25	-28455.8	47.25	3.290E-04	47.25	-1.740E-06
	49.5	1.760E-02	49.5	-29889.3	49.5	3.250E-04	49.5	-1.827E-06
	51.75	1.830E-02	51.75	-31333.9	51.75	3.208E-04	51.75	-1.916E-06
	54	1.900E-02	54	-32790.1	54	3.164E-04	54	-2.005E-06
	56.25	1.970E-02	56.25	-34258.5	56.25	3.118E-04	56.25	-2.095E-06
	58.5	2.040E-02	58.5	-35739.5	58.5	3.069E-04	58.5	-2.185E-06

Table BMTORSW Output for Graphics

		(T ··· · ·	I	
	60.75	2.110E-02	60.75	-37233.9	60.75	3.019E-04	60.75	-2.276E-06
	63	2.180E-02	63	-38742	63	2.967E-04	63	-2.369E-06
	65.25	2.240E-02	65.25	-40264.5	65.25	2.913E-04	65.25	-2.462E-06
	67.5	2.310E-02	67.5	-41802	67.5	2.856E-04	67.5	-2.556E-06
4								
	67.5	2.310E-02	67.5	-41802	67.5	2.856E-04	67.5	-2.556E-06
	69.75	2.370E-02	69.75	-43354.9	69.75	2.798E-04	69.75	-2.651E-06
	72	2.430E-02	72	-44924	72	2.737E-04	72	-2.747E-06
	74.25	2.490E-02	74.25	-46509.7	74.25	2.674E-04	74.25	-2.844E-06
	76.5	2.550E-02	76.5	-48112.6	76.5	2.609E-04	76.5	-2.942E-06
	78.75	2.610E-02	78.75	-49733.5	78.75	2.542E-04	78.75	-3.041E-06
	81	2.670E-02	81	-51372.7	81	2.472E-04	81	-3.141E-06
	83.25	2.720E-02	83.25	-53031	83.25	2.400E-04	83.25	-3.242E-06
	85.5	2.780E-02	85.5	-54709	85.5	2.326E-04	85.5	-3.345E-06
	87.75	2.830E-02	87.75	-56407.3	87.75	2.250E-04	87.75	-3.449E-06
	90	2.880E-02	90	-58126.5	90	2.171E-04	90	-3.554E-06
5								
	90	2.880E-02	90	-58126.5	90	2.171E-04	90	-3.554E-06
	92	2.920E-02	92	-57812.6	92	2.100E-04	92	-3.535E-06
	94	2.960E-02	94	-57515.7	94	2.030E-04	94	-3.516E-06
	96	3.000E-02	96	-57235.7	96	1.959E-04	96	-3.499E-06
	98	3.040E-02	98	-56972.4	98	1.890E-04	98	-3.483E-06
	100	3.080E-02	100	-56725.9	100	1.820E-04	100	-3.468E-06
	102	3.110E-02	102	-56496	102	1.751E-04	102	-3.454E-06
	104	3.150E-02	104	-56282.6	104	1.682E-04	104	-3.441E-06
	106	3.180E-02	106	-56085.7	106	1.613E-04	106	-3.429E-06
	108	3.210E-02	108	-55905.2	108	1.545E-04	108	-3.418E-06
	110	3.240E-02	110	-55741.2	110	1.476E-04	110	-3.408E-06
6								
	110	3.240E-02	110	-55741.2	110	1.476E-04	110	-3.408E-06
	112	3.270E-02	112	-55593.5	112	1.408E-04	112	-3.399E-06
	114	3.300E-02	114	-55462	114	1.341E-04	114	-3.391E-06
	116	3.320E-02	116	-55346.9	116	1.273E-04	116	-3.384E-06
	118	3.350E-02	118	-55247.9	118	1.205E-04	118	-3.378E-06

(continued) Table BMTORSW Output for Graphics

	(*******					r	
120	3.370E-02	120	-55165.2	120	1.138E-04	120	-3.373E-06
122	3.390E-02	122	-55098.6	122	1.070E-04	122	-3.369E-06
124	3.420E-02	124	-55048.1	124	1.003E-04	124	-3.366E-06
126	3.430E-02	126	-55013.8	126	9.356E-05	126	-3.364E-06
128	3.450E-02	128	-54995.6	128	8.683E-05	128	-3.362E-06
130	3.470E-02	130	-54993.6	130	8.011E-05	130	-3.362E-06
130	3.470E-02	130	-54993.6	130	8.011E-05	130	-3.362E-06
132	3.480E-02	132	-55007.6	132	7.338E-05	132	-3.363E-06
134	3.500E-02	134	-55037.8	134	6.666E-05	134	-3.365E-06
136	3.510E-02	136	-55084.1	136	5.992E-05	136	-3.368E-06
138	3.520E-02	138	-55146.5	138	5.318E-05	138	-3.372E-06
140	3.530E-02	140	-55225.2	140	4.644E-05	140	-3.376E-06
142	3.540E-02	142	-55320	142	3.968E-05	142	-3.382E-06
144	3.550E-02	144	-55431	144	3.291E-05	144	-3.389E-06
146	3.550E-02	146	-55558.2	146	2.612E-05	146	-3.397E-06
148	3.560E-02	148	-55701.8	148	1.932E-05	148	-3.406E-06
150	3.560E-02	150	-55861.6	150	1.250E-05	150	-3.415E-06
150	3.560E-02	150	-55861.6	150	1.250E-05	150	-3.415E-06
152	3.560E-02	152	-56037.9	152	5.657E-06	152	-3.426E-06
154	3.560E-02	154	-56230.5	154	-1.207E-06	154	-3.438E-06
156	3.560E-02	156	-56439.7	156	-8.095E-06	156	-3.451E-06
158	3.560E-02	158	-56665.4	158	-1.501E-05	158	-3.464E-06
160	3.560E-02	160	-56907.6	160	-2.195E-05	160	-3.479E-06
162	3.550E-02	162	-57166.6	162	-2.893E-05	162	-3.495E-06
164	3.550E-02	164	-57442.3	164	-3.594E-05	164	-3.512E-06
166	3.540E-02	166	-57734.9	166	-4.298E-05	166	-3.530E-06
168	3.530E-02	168	-58044.4	168	-5.006E-05	168	-3.549E-06
170	3.520E-02	170	-58370.9	170	-5.717E-05	170	-3.569E-06
170	3.520E-02	170	-58370.9	170	-5.717E-05	170	-3.569E-06
172	3.510E-02	172	-58714.5	172	-6.433E-05	172	-3.590E-06
174	3.490E-02	174	-59075.3	174	-7.153E-05	174	-3.612E-06
	120 122 124 126 128 130 130 132 134 136 138 140 142 144 146 148 150 152 154 150 152 154 156 158 160 152 154 156 158 160 162 164 166 168 170 172	120 3.370E-02 122 3.390E-02 124 3.420E-02 126 3.430E-02 128 3.450E-02 130 3.470E-02 130 3.470E-02 132 3.480E-02 134 3.500E-02 136 3.510E-02 138 3.520E-02 140 3.530E-02 142 3.540E-02 143 3.500E-02 144 3.550E-02 145 3.560E-02 148 3.560E-02 150 3.560E-02 150 3.560E-02 152 3.560E-02 154 3.560E-02 155 3.560E-02 156 3.560E-02 158 3.560E-02 160 3.550E-02 162 3.550E-02 163 3.540E-02 164 3.550E-02 165 3.560E-02 166 3.540E-02 168 3.530E-02 168 3.530E-02 <td< td=""><td>120 3.370E-02 120 122 3.390E-02 122 124 3.420E-02 124 126 3.430E-02 126 128 3.450E-02 128 130 3.470E-02 130 1310 3.470E-02 130 132 3.480E-02 132 134 3.500E-02 134 136 3.510E-02 136 138 3.520E-02 138 140 3.530E-02 140 142 3.540E-02 142 144 3.550E-02 144 146 3.550E-02 144 146 3.560E-02 150 150 3.560E-02 150 150 3.560E-02 150 152 3.560E-02 150 153 3.600E-02 150 154 3.560E-02 156 158 3.560E-02 156 158 3.560E-02 160 <t< td=""><td>120 3.370E-02 120 -55165.2 122 3.390E-02 122 -55098.6 124 3.420E-02 124 -55048.1 126 3.430E-02 126 -55013.8 128 3.450E-02 128 -54995.6 130 3.470E-02 130 -54993.6 130 3.470E-02 130 -54993.6 132 3.480E-02 132 -55007.6 134 3.500E-02 134 -55037.8 136 3.510E-02 136 -55084.1 138 3.520E-02 138 -55146.5 140 3.530E-02 142 -55320 144 3.550E-02 144 -55431 146 3.550E-02 144 -55431 146 3.560E-02 150 -55861.6 150 3.560E-02 150 -55861.6 152 3.560E-02 150 -55861.6 153 3.560E-02 154 -56230.5 156 3.560E-02 156 -56439.7 158</td></t<></td></td<> <td>120 3.370E-02 120 -55165.2 120 122 3.390E-02 122 -55098.6 122 124 3.420E-02 124 -55048.1 124 126 3.430E-02 128 -54995.6 128 130 3.470E-02 130 -54993.6 130 130 3.470E-02 130 -54993.6 130 130 3.470E-02 130 -54993.6 130 132 3.480E-02 132 -55007.6 132 134 3.500E-02 134 -55037.8 134 136 3.510E-02 136 -55084.1 136 138 3.520E-02 142 -55320 142 144 3.550E-02 144 -55431 144 146 3.550E-02 144 -55431 144 146 3.560E-02 150 -55861.6 150 150 3.560E-02 150 -55861.6 150 152<</td> <td>120 3.370E-02 120 -55165.2 120 1.138E-04 122 3.390E-02 122 -55098.6 122 1.070E-04 124 3.420E-02 124 -55048.1 124 1.003E-04 126 3.430E-02 126 -55013.8 126 9.356E-05 128 3.450E-02 128 -54995.6 128 8.683E-05 130 3.470E-02 130 -54993.6 130 8.011E-05 132 3.480E-02 132 -55007.6 132 7.338E-05 134 3.500E-02 134 -55037.8 134 6.666E-05 138 3.520E-02 138 -55146.5 138 5.318E-05 144 3.530E-02 140 -55225.2 140 4.644E-05 144 3.550E-02 144 -55431 144 3.291E-05 144 3.550E-02 144 -55431 144 3.291E-05 150 3.560E-02 150 -55861.6</td> <td>120 3.370E-02 120 -55165.2 120 1.138E-04 120 122 3.390E-02 122 -55098.6 122 1.070E-04 122 124 3.420E-02 124 -55048.1 124 1.003E-04 124 126 3.430E-02 126 -55013.8 126 9.356E-05 126 128 3.450E-02 128 -54993.6 130 8.011E-05 130 130 3.470E-02 130 -54993.6 130 8.011E-05 130 132 3.480E-02 132 -5507.6 132 7.338E-05 132 134 3.500E-02 134 -55037.8 134 6.666E-05 134 136 3.510E-02 142 -55320 142 3.968E-05 142 144 3.550E-02 144 -55431 144 3.291E-05 144 144 3.560E-02 150 -55861.6 150 1.250E-05 150 150</td>	120 3.370E-02 120 122 3.390E-02 122 124 3.420E-02 124 126 3.430E-02 126 128 3.450E-02 128 130 3.470E-02 130 1310 3.470E-02 130 132 3.480E-02 132 134 3.500E-02 134 136 3.510E-02 136 138 3.520E-02 138 140 3.530E-02 140 142 3.540E-02 142 144 3.550E-02 144 146 3.550E-02 144 146 3.560E-02 150 150 3.560E-02 150 150 3.560E-02 150 152 3.560E-02 150 153 3.600E-02 150 154 3.560E-02 156 158 3.560E-02 156 158 3.560E-02 160 <t< td=""><td>120 3.370E-02 120 -55165.2 122 3.390E-02 122 -55098.6 124 3.420E-02 124 -55048.1 126 3.430E-02 126 -55013.8 128 3.450E-02 128 -54995.6 130 3.470E-02 130 -54993.6 130 3.470E-02 130 -54993.6 132 3.480E-02 132 -55007.6 134 3.500E-02 134 -55037.8 136 3.510E-02 136 -55084.1 138 3.520E-02 138 -55146.5 140 3.530E-02 142 -55320 144 3.550E-02 144 -55431 146 3.550E-02 144 -55431 146 3.560E-02 150 -55861.6 150 3.560E-02 150 -55861.6 152 3.560E-02 150 -55861.6 153 3.560E-02 154 -56230.5 156 3.560E-02 156 -56439.7 158</td></t<>	120 3.370E-02 120 -55165.2 122 3.390E-02 122 -55098.6 124 3.420E-02 124 -55048.1 126 3.430E-02 126 -55013.8 128 3.450E-02 128 -54995.6 130 3.470E-02 130 -54993.6 130 3.470E-02 130 -54993.6 132 3.480E-02 132 -55007.6 134 3.500E-02 134 -55037.8 136 3.510E-02 136 -55084.1 138 3.520E-02 138 -55146.5 140 3.530E-02 142 -55320 144 3.550E-02 144 -55431 146 3.550E-02 144 -55431 146 3.560E-02 150 -55861.6 150 3.560E-02 150 -55861.6 152 3.560E-02 150 -55861.6 153 3.560E-02 154 -56230.5 156 3.560E-02 156 -56439.7 158	120 3.370E-02 120 -55165.2 120 122 3.390E-02 122 -55098.6 122 124 3.420E-02 124 -55048.1 124 126 3.430E-02 128 -54995.6 128 130 3.470E-02 130 -54993.6 130 130 3.470E-02 130 -54993.6 130 130 3.470E-02 130 -54993.6 130 132 3.480E-02 132 -55007.6 132 134 3.500E-02 134 -55037.8 134 136 3.510E-02 136 -55084.1 136 138 3.520E-02 142 -55320 142 144 3.550E-02 144 -55431 144 146 3.550E-02 144 -55431 144 146 3.560E-02 150 -55861.6 150 150 3.560E-02 150 -55861.6 150 152<	120 3.370E-02 120 -55165.2 120 1.138E-04 122 3.390E-02 122 -55098.6 122 1.070E-04 124 3.420E-02 124 -55048.1 124 1.003E-04 126 3.430E-02 126 -55013.8 126 9.356E-05 128 3.450E-02 128 -54995.6 128 8.683E-05 130 3.470E-02 130 -54993.6 130 8.011E-05 132 3.480E-02 132 -55007.6 132 7.338E-05 134 3.500E-02 134 -55037.8 134 6.666E-05 138 3.520E-02 138 -55146.5 138 5.318E-05 144 3.530E-02 140 -55225.2 140 4.644E-05 144 3.550E-02 144 -55431 144 3.291E-05 144 3.550E-02 144 -55431 144 3.291E-05 150 3.560E-02 150 -55861.6	120 3.370E-02 120 -55165.2 120 1.138E-04 120 122 3.390E-02 122 -55098.6 122 1.070E-04 122 124 3.420E-02 124 -55048.1 124 1.003E-04 124 126 3.430E-02 126 -55013.8 126 9.356E-05 126 128 3.450E-02 128 -54993.6 130 8.011E-05 130 130 3.470E-02 130 -54993.6 130 8.011E-05 130 132 3.480E-02 132 -5507.6 132 7.338E-05 132 134 3.500E-02 134 -55037.8 134 6.666E-05 134 136 3.510E-02 142 -55320 142 3.968E-05 142 144 3.550E-02 144 -55431 144 3.291E-05 144 144 3.560E-02 150 -55861.6 150 1.250E-05 150 150

(continued) Table BMTORSW Output for Graphics

		(*******						
	176	3.480E-02	176	-59453.4	176	-7.878E-05	176	-3.635E-06
	178	3.460E-02	178	-59849	178	-8.607E-05	178	-3.659E-06
	180	3.440E-02	180	-60262.1	180	-9.342E-05	180	-3.684E-06
	182	3.420E-02	182	-60692.8	182	-1.008E-04	182	-3.711E-06
	184	3.400E-02	184	-61141.4	184	-1.083E-04	184	-3.738E-06
	186	3.380E-02	186	-61607.8	186	-1.158E-04	186	-3.767E-06
	188	3.360E-02	188	-62092.3	188	-1.233E-04	188	-3.796E-06
	190	3.330E-02	190	-62595	190	-1.310E-04	190	-3.827E-06
10								
	190	3.330E-02	190	-62595	190	-1.310E-04	190	-3.827E-06
	192	3.300E-02	192	-63116.1	192	-1.386E-04	192	-3.859E-06
	194	3.280E-02	194	-63655.7	194	-1.464E-04	194	-3.892E-06
	196	3.250E-02	196	-64213.9	196	-1.542E-04	196	-3.926E-06
	198	3.210E-02	198	-64790.9	198	-1.621E-04	198	-3.961E-06
	200	3.180E-02	200	-65386.9	200	-1.701E-04	200	-3.998E-06
	202	3.150E-02	202	-66002.1	202	-1.781E-04	202	-4.035E-06
	204	3.110E-02	204	-66636.7	204	-1.862E-04	204	-4.074E-06
	206	3.070E-02	206	-67290.7	206	-1.944E-04	206	-4.114E-06
	208	3.030E-02	208	-67964.5	208	-2.027E-04	208	-4.155E-06
	210	2.990E-02	210	-68658.2	210	-2.110E-04	210	-4.198E-06
11								
	210	2.990E-02	210	-68658.2	210	-2.110E-04	210	-4.198E-06
	212.25	2.940E-02	212.25	-66627.5	212.25	-2.203E-04	212.25	-4.074E-06
	214.5	2.890E-02	214.5	-64621.6	214.5	-2.293E-04	214.5	-3.951E-06
	216.75	2.840E-02	216.75	-62639.5	216.75	-2.381E-04	216.75	-3.830E-06
	219	2.780E-02	219	-60680.8	219	-2.466E-04	219	-3.710E-06
	221.25	2.730E-02	221.25	-58744.5	221.25	-2.548E-04	221.25	-3.592E-06
	223.5	2.670E-02	223.5	-56830	223.5	-2.627E-04	223.5	-3.475E-06
	225.75	2.610E-02	225.75	-54936.6	225.75	-2.704E-04	225.75	-3.359E-06
	228	2.550E-02	228	-53063.6	228	-2.778E-04	228	-3.244E-06
	230.25	2.480E-02	230.25	-51210.3	230.25	-2.850E-04	230.25	-3.131E-06
	232.5	2.420E-02	232.5	-49376	232.5	-2.919E-04	232.5	-3.019E-06
12								
	232.5	2.420E-02	232.5	-49376	232.5	-2.919E-04	232.5	-3.019E-06

(continued) Table BMTORSW Output for Graphics

		(continue	<i>u</i>) 1 <i>u</i> 01			uput ioi Oiu	pines	
	234.75	2.350E-02	234.75	-47559.9	234.75	-2.986E-04	234.75	-2.908E-06
	237	2.280E-02	237	-45761.6	237	-3.050E-04	237	-2.798E-06
	239.25	2.220E-02	239.25	-43980.2	239.25	-3.112E-04	239.25	-2.689E-06
	241.5	2.140E-02	241.5	-42215.1	241.5	-3.171E-04	241.5	-2.581E-06
	243.75	2.070E-02	243.75	-40465.6	243.75	-3.228E-04	243.75	-2.474E-06
	246	2.000E-02	246	-38731.2	246	-3.283E-04	246	-2.368E-06
	248.25	1.930E-02	248.25	-37011.2	248.25	-3.335E-04	248.25	-2.263E-06
	250.5	1.850E-02	250.5	-35304.9	250.5	-3.384E-04	250.5	-2.159E-06
	252.75	1.770E-02	252.75	-33611.6	252.75	-3.432E-04	252.75	-2.055E-06
	255	1.700E-02	255	-31930.9	255	-3.477E-04	255	-1.952E-06
13								
	255	1.700E-02	255	-31930.9	255	-3.477E-04	255	-1.952E-06
	257.25	1.620E-02	257.25	-30262	257.25	-3.520E-04	257.25	-1.850E-06
	259.5	1.540E-02	259.5	-28604.3	259.5	-3.560E-04	259.5	-1.749E-06
	261.75	1.460E-02	261.75	-26957.2	261.75	-3.598E-04	261.75	-1.648E-06
	264	1.370E-02	264	-25320.1	264	-3.634E-04	264	-1.548E-06
	266.25	1.290E-02	266.25	-23692.4	266.25	-3.668E-04	266.25	-1.449E-06
	268.5	1.210E-02	268.5	-22073.5	268.5	-3.700E-04	268.5	-1.350E-06
	270.75	1.130E-02	270.75	-20462.8	270.75	-3.729E-04	270.75	-1.251E-06
	273	1.040E-02	273	-18859.7	273	-3.756E-04	273	-1.153E-06
	275.25	9.600E-03	275.25	-17263.6	275.25	-3.781E-04	275.25	-1.055E-06
	277.5	8.700E-03	277.5	-15673.8	277.5	-3.803E-04	277.5	-9.583E-07
14								
	277.5	8.700E-03	277.5	-15673.8	277.5	-3.803E-04	277.5	-9.583E-07
	279.75	7.900E-03	279.75	-14089.9	279.75	-3.824E-04	279.75	-8.615E-07
	282	7.000E-03	282	-12511.3	282	-3.842E-04	282	-7.649E-07
	284.25	6.100E-03	284.25	-10937.2	284.25	-3.858E-04	284.25	-6.687E-07
	286.5	5.300E-03	286.5	-9367.23	286.5	-3.872E-04	286.5	-5.727E-07
	288.75	4.400E-03	288.75	-7800.72	288.75	-3.884E-04	288.75	-4.769E-07
	291	3.500E-03	291	-6237.11	291	-3.894E-04	291	-3.813E-07
	293.25	2.600E-03	293.25	-4675.81	293.25	-3.901E-04	293.25	-2.859E-07
	295.5	1.800E-03	295.5	-3116.24	295.5	-3.907E-04	295.5	-1.905E-07
	297.75	9.000E-04	297.75	-1557.83	297.75	-3.910E-04	297.75	-9.525E-08
	300	0.000E+00	300	0	300	-3.911E-04	300	3.473E-13

(continued) Table BMTORSW Output for Graphics

				Pure torsion shear			Warping stresses			
				stress		stress		axial		shear
Elem	Ζ	θ'''	Ζ	web	Ζ	flange	Ζ	flange	Ζ	flange
1										
	0	-3.584E-08	0	4.14	0	8.28	0	0.00	0	0.72
	2.25	-3.584E-08	2.25	4.14	2.25	8.28	2.25	-0.36	2.25	0.72
	4.5	-3.586E-08	4.5	4.14	4.5	8.27	4.5	-0.72	4.5	0.72
	6.75	-3.590E-08	6.75	4.13	6.75	8.26	6.75	-1.07	6.75	0.72
	9	-3.594E-08	9	4.12	9	8.25	9	-1.43	9	0.72
	11.25	-3.600E-08	11.25	4.11	11.25	8.23	11.25	-1.79	11.25	0.72
	13.5	-3.608E-08	13.5	4.10	13.5	8.21	13.5	-2.15	13.5	0.72
	15.75	-3.616E-08	15.75	4.09	15.75	8.18	15.75	-2.51	15.75	0.72
	18	-3.626E-08	18	4.07	18	8.15	18	-2.87	18	0.72
	20.25	-3.638E-08	20.25	4.06	20.25	8.11	20.25	-3.24	20.25	0.73
	22.5	-3.650E-08	22.5	4.04	22.5	8.08	22.5	-3.60	22.5	0.73
2				0.00		0.00		0.00		0.00
	22.5	-3.650E-08	22.5	4.04	22.5	8.08	22.5	-3.60	22.5	0.73
	24.75	-3.664E-08	24.75	4.02	24.75	8.03	24.75	-3.96	24.75	0.73
	27	-3.680E-08	27	3.99	27	7.98	27	-4.33	27	0.73
	29.25	-3.696E-08	29.25	3.97	29.25	7.93	29.25	-4.70	29.25	0.74
	31.5	-3.715E-08	31.5	3.94	31.5	7.88	31.5	-5.07	31.5	0.74
	33.75	-3.734E-08	33.75	3.91	33.75	7.82	33.75	-5.44	33.75	0.75
	36	-3.755E-08	36	3.88	36	7.75	36	-5.82	36	0.75
	38.25	-3.777E-08	38.25	3.84	38.25	7.69	38.25	-6.19	38.25	0.75
	40.5	-3.801E-08	40.5	3.81	40.5	7.61	40.5	-6.57	40.5	0.76
	42.75	-3.826E-08	42.75	3.77	42.75	7.54	42.75	-6.95	42.75	0.76
	45	-3.853E-08	45	3.73	45	7.45	45	-7.33	45	0.77
3				0.00		0.00		0.00		0.00
	45	-3.853E-08	45	3.73	45	7.45	45	-7.33	45	0.77
	47.25	-3.881E-08	47.25	3.68	47.25	7.37	47.25	-7.72	47.25	0.77
	49.5	-3.910E-08	49.5	3.64	49.5	7.28	49.5	-8.11	49.5	0.78
	51.75	-3.941E-08	51.75	3.59	51.75	7.19	51.75	-8.50	51.75	0.79
	54	-3.973E-08	54	3.54	54	7.09	54	-8.90	54	0.79
	56.25	-4.007E-08	56.25	3.49	56.25	6.98	56.25	-9.30	56.25	0.80

Table 3rd Derivative and Stresses Processed

		()		-						
	58.5	-4.042E-08	58.5	3.44	58.5	6.87	58.5	-9.69	58.5	0.81
	60.75	-4.079E-08	60.75	3.38	60.75	6.76	60.75	-10.10	60.75	0.81
	63	-4.117E-08	63	3.32	63	6.65	63	-10.51	63	0.82
	65.25	-4.157E-08	65.25	3.26	65.25	6.53	65.25	-10.92	65.25	0.83
	67.5	-4.198E-08	67.5	3.20	67.5	6.40	67.5	-11.34	67.5	0.84
4				0.00		0.00		0.00		0.00
	67.5	-4.199E-08	67.5	3.20	67.5	6.40	67.5	-11.34	67.5	0.84
	69.75	-4.242E-08	69.75	3.13	69.75	6.27	69.75	-11.76	69.75	0.85
	72	-4.286E-08	72	3.07	72	6.13	72	-12.19	72	0.86
	74.25	-4.332E-08	74.25	2.99	74.25	5.99	74.25	-12.62	74.25	0.86
	76.5	-4.380E-08	76.5	2.92	76.5	5.84	76.5	-13.05	76.5	0.87
	78.75	-4.429E-08	78.75	2.85	78.75	5.69	78.75	-13.49	78.75	0.88
	81	-4.480E-08	81	2.77	81	5.54	81	-13.94	81	0.89
	83.25	-4.533E-08	83.25	2.69	83.25	5.38	83.25	-14.38	83.25	0.91
	85.5	-4.587E-08	85.5	2.61	85.5	5.21	85.5	-14.84	85.5	0.92
	87.75	-4.643E-08	87.75	2.52	87.75	5.04	87.75	-15.30	87.75	0.93
	90	-4.700E-08	90	2.43	90	4.86	90	-15.77	90	0.94
5				0.00		0.00		0.00		0.00
	90	9.852E-09	90	2.43	90	4.86	90	-15.77	90	-0.20
	92	9.334E-09	92	2.35	92	4.70	92	-15.68	92	-0.19
	94	8.818E-09	94	2.27	94	4.55	94	-15.60	94	-0.18
	96	8.304E-09	96	2.19	96	4.39	96	-15.53	96	-0.17
	98	7.792E-09	98	2.12	98	4.23	98	-15.45	98	-0.16
	100	7.283E-09	100	2.04	100	4.08	100	-15.39	100	-0.15
	102	6.775E-09	102	1.96	102	3.92	102	-15.33	102	-0.14
	104	6.270E-09	104	1.88	104	3.77	104	-15.27	104	-0.13
	106	5.767E-09	106	1.81	106	3.61	106	-15.21	106	-0.12
	108	5.266E-09	108	1.73	108	3.46	108	-15.17	108	-0.11
	110	4.767E-09	110	1.65	110	3.31	110	-15.12	110	-0.10
6				0.00		0.00		0.00		0.00
	110	4.764E-09	110	1.65	110	3.31	110	-15.12	110	-0.10
	112	4.266E-09	112	1.58	112	3.15	112	-15.08	112	-0.09
	114	3.769E-09	114	1.50	114	3.00	114	-15.05	114	-0.08
	116	3 273E-09	116	1 43	116	2.85	116	-1501	116	-0.07

(continued) Table 3rd Derivative and Stresses Processed

		(*******								
	118	2.778E-09	118	1.35	118	2.70	118	-14.99	118	-0.06
	120	2.283E-09	120	1.27	120	2.55	120	-14.97	120	-0.05
	122	1.789E-09	122	1.20	122	2.40	122	-14.95	122	-0.04
	124	1.295E-09	124	1.12	124	2.25	124	-14.93	124	-0.03
	126	8.022E-10	126	1.05	126	2.10	126	-14.93	126	-0.02
	128	3.100E-10	128	0.97	128	1.94	128	-14.92	128	-0.01
	130	-1.815E-10	130	0.90	130	1.79	130	-14.92	130	0.00
7				0.00		0.00		0.00		0.00
	130	-1.849E-10	130	0.90	130	1.79	130	-14.92	130	0.00
	132	-6.765E-10	132	0.82	132	1.64	132	-14.92	132	0.01
	134	-1.169E-09	134	0.75	134	1.49	134	-14.93	134	0.02
	136	-1.662E-09	136	0.67	136	1.34	136	-14.94	136	0.03
	138	-2.156E-09	138	0.60	138	1.19	138	-14.96	138	0.04
	140	-2.650E-09	140	0.52	140	1.04	140	-14.98	140	0.05
	142	-3.146E-09	142	0.44	142	0.89	142	-15.01	142	0.06
	144	-3.642E-09	144	0.37	144	0.74	144	-15.04	144	0.07
	146	-4.139E-09	146	0.29	146	0.59	146	-15.07	146	0.08
	148	-4.637E-09	148	0.22	148	0.43	148	-15.11	148	0.09
	150	-5.135E-09	150	0.14	150	0.28	150	-15.15	150	0.10
8				0.00		0.00		0.00		0.00
	150	-5.139E-09	150	0.14	150	0.28	150	-15.15	150	0.10
	152	-5.639E-09	152	0.06	152	0.13	152	-15.20	152	0.11
	154	-6.141E-09	154	-0.01	154	-0.03	154	-15.25	154	0.12
	156	-6.646E-09	156	-0.09	156	-0.18	156	-15.31	156	0.13
	158	-7.152E-09	158	-0.17	158	-0.34	158	-15.37	158	0.14
	160	-7.661E-09	160	-0.25	160	-0.49	160	-15.44	160	0.15
	162	-8.173E-09	162	-0.32	162	-0.65	162	-15.51	162	0.16
	164	-8.686E-09	164	-0.40	164	-0.81	164	-15.58	164	0.17
	166	-9.202E-09	166	-0.48	166	-0.96	166	-15.66	166	0.18
	168	-9.720E-09	168	-0.56	168	-1.12	168	-15.75	168	0.19
	170	-1.024E-08	170	-0.64	170	-1.28	170	-15.84	170	0.20
9				0.00		0.00		0.00		0.00
	170	-1.024E-08	170	-0.64	170	-1.28	170	-15.84	170	0.20
	172	-1.077E-08	172	-0.72	172	-1.44	172	-15.93	172	0.22

(continued) Table 3rd Derivative and Stresses Processed

		(*******								
	174	-1.129E-08	174	-0.80	174	-1.60	174	-16.03	174	0.23
	176	-1.182E-08	176	-0.88	176	-1.76	176	-16.13	176	0.24
	178	-1.236E-08	178	-0.96	178	-1.93	178	-16.23	178	0.25
	180	-1.290E-08	180	-1.05	180	-2.09	180	-16.35	180	0.26
	182	-1.344E-08	182	-1.13	182	-2.26	182	-16.47	182	0.27
	184	-1.399E-08	184	-1.21	184	-2.43	184	-16.59	184	0.28
	186	-1.454E-08	186	-1.30	186	-2.59	186	-16.71	186	0.29
	188	-1.509E-08	188	-1.38	188	-2.76	188	-16.84	188	0.30
	190	-1.565E-08	190	-1.47	190	-2.93	190	-16.98	190	0.31
10				0.00		0.00		0.00		0.00
	190	-1.565E-08	190	-1.47	190	-2.93	190	-16.98	190	0.31
	192	-1.621E-08	192	-1.55	192	-3.10	192	-17.12	192	0.32
	194	-1.678E-08	194	-1.64	194	-3.28	194	-17.27	194	0.34
	196	-1.735E-08	196	-1.73	196	-3.45	196	-17.42	196	0.35
	198	-1.793E-08	198	-1.82	198	-3.63	198	-17.57	198	0.36
	200	-1.851E-08	200	-1.91	200	-3.81	200	-17.74	200	0.37
	202	-1.910E-08	202	-1.99	202	-3.99	202	-17.90	202	0.38
	204	-1.970E-08	204	-2.09	204	-4.17	204	-18.08	204	0.39
	206	-2.030E-08	206	-2.18	206	-4.35	206	-18.25	206	0.41
	208	-2.090E-08	208.6	-2.27	208	-4.54	208	-18.44	208	0.42
	210	-2.151E-08	210	-2.36	210	-4.73	210	-18.63	210	0.43
11				0.00		0.00		0.00		0.00
	210	5.552E-08	210	-2.36	210	-4.73	210	-18.63	210	-1.11
	212.25	5.484E-08	212.25	-2.47	212.25	-4.93	212.3	-18.08	212.25	-1.09
	214.5	5.418E-08	214.5	-2.57	214.5	-5.14	214.5	-17.53	214.5	-1.08
	216.75	5.354E-08	216.75	-2.67	216.75	-5.33	216.8	-16.99	216.75	-1.07
	219	5.292E-08	219	-2.76	219	-5.52	219	-16.46	219	-1.06
	221.25	5.232E-08	221.25	-2.85	221.25	-5.71	221.3	-15.94	221.25	-1.04
	223.5	5.173E-08	223.5	-2.94	223.5	-5.88	223.5	-15.42	223.5	-1.03
	225.75	5.117E-08	225.75	-3.03	225.75	-6.06	225.8	-14.90	225.75	-1.02
	228	5.062E-08	228	-3.11	228	-6.22	228	-14.39	228	-1.01
	230.25	5.010E-08	230.25	-3.19	230.25	-6.38	230.3	-13.89	230.25	-1.00
	232.5	4.960E-08	232.5	-3.27	232.5	-6.54	232.5	-13.40	232.5	-0.99
12				0.00		0.00		0.00		0.00

(continued) Table 3rd Derivative and Stresses Processed

		(continued)	10010.		1141110		000001	10000000	/u	
	232.5	4.959E-08	232.5	-3.27	232.5	-6.54	232.5	-13.40	232.5	-0.99
	234.75	4.910E-08	234.75	-3.34	234.75	-6.69	234.8	-12.90	234.75	-0.98
	237	4.863E-08	237	-3.42	237	-6.83	237	-12.41	237	-0.97
	239.25	4.818E-08	239.25	-3.49	239.25	-6.97	239.3	-11.93	239.25	-0.96
	241.5	4.775E-08	241.5	-3.55	241.5	-7.10	241.5	-11.45	241.5	-0.95
	243.75	4.733E-08	243.75	-3.62	243.75	-7.23	243.8	-10.98	243.75	-0.95
	246	4.693E-08	246	-3.68	246	-7.35	246	-10.51	246	-0.94
	248.25	4.655E-08	248.25	-3.74	248.25	-7.47	248.3	-10.04	248.25	-0.93
	250.5	4.619E-08	250.5	-3.79	250.5	-7.58	250.5	-9.58	250.5	-0.92
	252.75	4.584E-08	252.75	-3.84	252.75	-7.69	252.8	-9.12	252.75	-0.92
13	255	4.551E-08	255	-3.89	255	-7.79	255	-8.66	255	-0.91
	257.25	4.519E-08	257.25	-3.94	257.25	-7.88	257.3	-8.21	257.25	-0.90
	259.5	4.490E-08	259.5	-3.99	259.5	-7.97	259.5	-7.76	259.5	-0.90
	261.75	4.462E-08	261.75	-4.03	261.75	-8.06	261.8	-7.31	261.75	-0.89
	264	4.435E-08	264	-4.07	264	-8.14	264	-6.87	264	-0.89
	266.25	4.411E-08	266.25	-4.11	266.25	-8.22	266.3	-6.43	266.25	-0.88
	268.5	4.388E-08	268.5	-4.14	268.5	-8.29	268.5	-5.99	268.5	-0.88
	270.75	4.366E-08	270.75	-4.18	270.75	-8.35	270.8	-5.55	270.75	-0.87
	273	4.346E-08	273	-4.21	273	-8.41	273	-5.12	273	-0.87
	275.25	4.328E-08	275.25	-4.23	275.25	-8.47	275.3	-4.68	275.25	-0.86
14	277.5	4.312E-08	277.5	-4.26	277.5	-8.52	277.5	-4.25	277.5	-0.86
	279.75	4.297E-08	279.75	-4.28	279.75	-8.57	279.8	-3.82	279.75	-0.86
	282	4.283E-08	282	-4.30	282	-8.61	282	-3.39	282	-0.86
	284.25	4.271E-08	284.25	-4.32	284.25	-8.64	284.3	-2.97	284.25	-0.85
	286.5	4.261E-08	286.5	-4.34	286.5	-8.67	286.5	-2.54	286.5	-0.85
	288.75	4.253E-08	288.75	-4.35	288.75	-8.70	288.8	-2.12	288.75	-0.85
	291	4.245E-08	291	-4.36	291	-8.72	291	-1.69	291	-0.85
	293.25	4.240E-08	293.25	-4.37	293.25	-8.74	293.3	-1.27	293.25	-0.85
	295.5	4.236E-08	295.5	-4.38	295.5	-8.75	295.5	-0.85	295.5	-0.85
	297.75	4.234E-08	297.75	-4.38	297.75	-8.76	297.8	-0.42	297.75	-0.85
	300	4.233E-08	300	-4.38	300	-8.76	300	0.00	300	-0.85

(continued) Table 3rd Derivative and Stresses Processed

APPENDIX F

AISC-DG9-EXAMPLE 5.5

In the EBC of case study four, this material corresponds to the input model, input data, input forms, figures of output data with checks in notepad version, and excel processed output data and charts.

Charts are presented containing both partial and combined tresses along interest points of the beam and cross section profile. Again, the asymptotic behavior of the thinwalled beam elastic line is successfully shown in the charts, which evidences the efficiency of the high order finite element used by BMTORSWP.

It is important to notice that the exact location of the smeared DOF representing the distributed load is unknown. Nevertheless, it is assumed to be at midspan of the element for the purpose of checking summation of moments. This criterion has provided good results as it could be seen in pages 2 and four of the output notepads.

0.555 kip/in

Elastic Line and BMTORSWP Model for DG9-Ex. 5.5

Notepad Input Data for BMTORSWP.

المتسارات

Input Form Right Side

5-50 eleme-6ft YOU ARE USING COMPUTER PROGRAM BMTORSW, DEVELOPED BY DR. BERNARDO DESCHAPELLES INPUT DATA FILE NAME IS = 5-5.txt OUTPUT FILE NAME IS = 5-50.txt STORAGE FILE FOR POST-PROCESSING WITH EXCEL = 5-5grf.grf AISC Design Guide 9, Example 5.5, MC18x42.7 channel modulus of elasticity of the material= 29000. k/ft2 ELEM nodes inertia length distrib. load AXIAL SOIL NORMAL MODULUS,Ksf angle at i 0.555 at j LOAD 0.555****** ft.4 ft 1st END 2nd END rad Ž***** 6.00 0.0 0.000 00 1 1 0.0 5****** 6.00 0.555****** 2 0.0 3 0.555 0.0 0.000 00 0.555****** 3 7****** 16.00 0.555 0.0 0.0 0.000 00 9******* 16.00 0.555****** 0.555 0.000 00 0.0 4 0.0 11****** 16.00 0.555******* 5 9 0.555 0.0 0.0 0.000 00 13****** 6.00 0.555 0.555****** 0.0 0.000 00 6 11 0.0 0.555****** 15****** 0.555 0.000 00 13 6.00 0.0 0.0 INPUT DATA RELATED TO THE 2 SUPPORTS 2 1 1 1 115 0 0 1 FINAL SOLUTION FOUND AFTER 1 ITERATIONS Output of nodal displacements in reference to global axes displ. node displ. displ. displ. node displ. displ. along y along x along x around z along y around z or nonn2 or nonn 3 or nonn1 or nonn 3 or nonn1 or nonn2 1 0.0000E+00 0.0000E+00 0.0000E+00 2 0.0000E+00 0.1835E-03 0.4518E-04 3 0.0000E+00 0.5367E-03 0.1699E-03 4 0.0000E+00 0.1178E-02 0.1172E-03 5 0.0000E+00 0.1939E-02 0.2898E-03 6 0.0000F+00 0.4763F-02 0.5041F-03 7 0.0000E+00 0.7923E-02 0.4174E-03 8 0.0000E+00 0.1118E-01 0.5311E-03 .ocal extreme d2y/dx:2 = 0 = bimoment 🚿 9 0.0000E+00 0.1426E-01 0.3493E-03 10 0.0000E+00 0.1662E-01 0.3555E-03 11 0.0000E+00 0.1850E-01 0.1686E-03 12 0.0000E+00 0.1893E-01 0.6387E-04 13 0.0000E+00 0.1927E-01 0.8589E-04 14 0.0000E+00 0.1944E-01 0.2155E-04 15 0.0000E+00 0.1953E-01 0.0000E+00 Local extreme twist and zero St. Vt. Torque OUTPUT OF SOIL REACTIONS, STRESSES AND TRANSVERSE DISPLACEMENTS Page 1

Output Data Page 1

5-50 1 DISPLACEMENTS IN INCIDENCES 1 2 3 ELEMENT 0.0000E+00 0.00000E+00 0.00000E+00 NODE 1 0.0000E+00 0.18348E-03 2 0.45178E-04 NODE NODE 3 0.00000E+00 0.53673E-03 0.16991E-03 FORCES ACTING ALONG THE 9 DOF 0.00000E+00 -0.39960E+02 NODE -0.81373E+03 1 NODE 2 0.00000E+00 0.33300E+01 -0.31143E-10 NODE 3 0.00000E+00 0.36630E+02 0.59135E+03 ELEMENT 1, FROM NODE 1, TO NODE 3 - LENGTH = 6.00 ft left half of span, at tenth points of length span 0.2 span 0.3 span span span span 0.1 0.0 0.4 0.5 0.000 0.000 0.000 0.000 soil,k/ft 0.000 0.000 -39.63 -39.29 shear,k -39.96 -38.96 -38.63 -38.30 bmom,kft 🔥 720.68 789.93 766.50 743.41 813.73 698.29 0.00000 0.00001 0.00002 0.00005 0.00009 0.00014 tdisp,ft 0.00 AT 1st END and 0.00 AT 2nd END axial,k 72inx0.555kip/in=39.96kip right half of span,at tenth points of length span 0.6 span 0.7 span 0.8 span span span 0.5 0.9 1.0 soil.k/ft 0.000 0.000 0.000 0.000 0.000 0.000 -37.96 -37.63 shear,k -37.30 -36.96 -38.30 -36.63 676.24 bmom, kft 698.29 654.53 633.14 612.09 591.35 0.00014 0.00020 0.00027 0.00035 tdisp,ft 0.00044 0.00054 axial,k 0.00 AT 2nd END 0.00 AT 1st END and ELEMENT 2 DISPLACEMENTS IN INCIDENCES 3 4 0.53673E-03 0.00000E+00 NODE 3 0.16991E-03 4 0.00000E+00 0.11780E-02 0.11724E-03 NODE 0.28979E-03 NODE 5 0.00000E+00 0.19390E-02 FORCES ACTING ALONG THE 9 DOF 3 0.00000E+00 -0.36630E+02 -0.59135E+03 NODE 4 0.00000E+00 0.33300E+01 -0.15864E-09 NODE NODE 5 0.00000E+00 0.33300E+02 0.40088E+03 ELEMENT 2, FROM NODE 3, TO NODE 5 - LENGTH = 6.00 ft left half of span, at tenth points of length span 0.3 span 0.2 span span span span 0.0 0.1 0.4 0.5 0.Ø00 0.000 0.000 soil,k/ft 0.000 0.000 0.000 shear, k -36.63 -36.30 -35.96 -35.63 -35.30 -34.97 591.35 570.94 492.38 bmom.kft 550.84 531.05 511.56 0.00054 0.00064 0,00076 0.00088 tdisp,ft 0.00101 0.00115 0.00 AT 1st END and axial,k 0.00 AT 2nd END right half of span, at tenth points of length / span 0.7 span 0.8 span 0.6 span span span 0.9 0.5 1.0 0.000 soil,k/ft 0.000 0.000 0.000 0 000 0.000 -34,63 473.50 shear,k -34.97 -34.30 -33.97 -33.63 -33.30 492.38 454.91 436.62 418.61 400.88 bmom, kft 0.00129 0.00144 0.00160 tdisp,ft 0.00115 0.00194 0.00177 0.00 AT 2nd END 0.00 AT 1/st END and axial.k ELEMENT 3 DISPLACEMENTS IN INCIDENCES 5 6 7 0.00000E+00 5 / 0.19390E-02 NODE 0.28979E-03 $(-\text{Di} + \text{Dj})^* \text{GJ} + \text{Vj}^*\text{L} - 3.33\text{xL}/2 = \text{Mj-Mi}, \text{ where GJ} = 137/6^{-2}$ -0.00054+0.00194)13776-33.3*6 -9.99=19.29-199.8 -9.99=-189.98 400.88-591.35=-190.47 OK

Output Data Page 2

5-50 6 0.00000E+00 7 0.00000E+00 0.50413E-03 0.47633E-02 NODE NODE 0.00000E+00 0.79232E-02 0.41740E-03 FORCES ACTING ALONG THE 9 DOF NODE 5 0.0000E+00 -0.33300E+02 -0.40088E+03 NODE 0.00000E+00 0.88800E+01 0.41688E-10 6 NODE 7 0.00000E+00 0.24420E+02 0.21560E+02 ELEMENT 3, FROM NODE 5, TO NODE 7 - LENGTH = 16.00 ft left half of span, at tenth points of length span' span span 0.1 0.2 0.3 (span span 0.4 span 0.0 0.5 0.000 0.000 0.000 0.000 0.000 soil,k/ft 0.000 -30.64 -29.75 shear,k -33.30 -32.41 -31.52 -28.86 268.88 bmom, kft 400.88 354.97 310.99 228.57 190.01 0.00242 0.00294 0.00350 tdisp,ft 0.00194 0.00408 0.00468 0.00 AT 2nd END 0.00 AT 1st END and axial,k right half of span, at tenth points of length span span 0.8 0.9 span' span' span 0.5 0.6 0.7 span 1.0 0.000 0.000 0.000 0.000 0.000 0.000 soil,k/ft -27.08 117.91 -25.31 52.16 shear,k -28.86 -27.97 -26.20 -24.42 190.01 84.26 21.56 153.14 bmom, kft 0.00468 0.00530 0.00594 0.00660 0.00726 0.00792 tdisp,ft 0.00 AT 2nd END axial,k 0.00 AT 1st END and ELEMENT 4 DISPLACEMENTS IN INCIDENCES 7 8 9 0.79232E-02 0.11183E-01 0.00000E+00 7 0.41740E-03 NODE 8 0.0000E+00 NODE 0.53113E-03 NODE 9 0.00000E+00 0.14257E-01 0.34926E-03 FORCES ACTING ALONG THE 9 DOF NODE 7 0.00000E+00 -0.24420E+02 -0.21560E+02 0.88800E+01 8 0.11555E-09 NODE 0.00000E+00 NODE 9 0.00000E+00 0.15540E+02 -0.21087E+03 ELEMENT 4, FROM NODE 7, TO NODE 9 - LENGTH = 16.00 ft left half of span, at tenth points of length span 0.5 span span 0.1 0.2 span span 0.3 0.4 span 0.0 0.000 0.000 soil,k/ft 0.000 0.000 0.000 0.000 soil,k/ft 0.000 shear,k -19.98 $\begin{array}{ccc} 0.000 & 0.000 \\ -19.09 & -18.20 \end{array}$ 0.000 0.000 -17.32 -16.43 0.000 -15.54 -154.22 -174.27 -193.14 0.01249 0.01310 0.01369 -110.49 -132.97 bmom,kft -210.87 0.01123 0.01187 tdisp,ft 0.01426 0.00 AT 2nd END 0.00 AT 1st END and axial,k -----_____ ELEMENT 5 DISPLACEMENTS IN INCIDENCES 9 10 11 NODE 9 0.00000E+00 0.14257E-01 0.34926E-03 0.16622E-01 NODE 10 0.00000E+00 0.35553E-03 NODE 11 0.00000E+00 0.18503E-01 0.16864E-03 FORCES ACTING ALONG THE 9 DOF Page 3

Output Data Page 3

5-50 0.00000E+00 -0.15540E+02 9 0.21087E+03 NODE NODE 10 0.00000E+00 0.88800E+01 0.79967E-10 NODE 11 0.00000E+00 0.66600E+01 -0.32998E+03 ELEMENT 5, FROM NODE 9, TO NODE 11 - LENGTH = 16.00 ft left half of span, at tenth points of length 51⁻ 1 span 0.2 span 0.3 span span span span 0.0 0.1 0.4 0.5 0.000 0.000 0.000 0.000 soil,k/ft 0.000 0.000 -12.88 shear,k -15.54 -14.65 -11.99 -11.10 bmom,kft -210.87 -227.48 -242.99 -257.43 -270.82-283.17 0.01426 0.01480 0.01533 0.01583 tdisp,ft 0.01630 0.01674 0.00 AT 1st END and 0.00 AT 2nd END axial,k right half of span, at tenth points of length span span span 0.6 0.7 span span 0.8 0.9 span 0.5 1.0 0,000 0.000 0,000 ____0<u>.</u>000 0.000 0.000 soil,k/ft shear,k bmom,kft -11.10 -10.21 -9.32 -8.44 -7.55 -6.66 -314.19 0.01790 -283.17 -294.50 -304.84 -322.56 -329.98 0.01674 0.01716 0.01754 0.01822 tdisp,ft 0.01850 0.00 AT 2nd END axial,k 0.00 AT 1st END and ELEMENT 6 DISPLACEMENTS IN INCIDENCES 11 12 13 0.00000E+00 0.18503E-01 NODE 0.16864E-03 11 0.63868E-04 12 0.0000E+00 0.18927E-01 NODE NODE 13 0.00000E+00 0.19268E-01 0.85888E-04 FORCES ACTING ALONG THE 9 DOF -0.66600F+01 0.33<u>300E+01</u> NODE 11 0.00000E+00 0.32998E+03 NODE 12 0.00000E+00 0.21120E-08 NODE 13 -0.34940E+03 0.00000E+00 0.33300E+01 ELEMENT 6, FROM NODE 11, TO NODE 13 - LENGTH = 6.00 ft left half of span, at tenth points of length span 0.4 span / 0.2 / span 0.3 span span span 0.0 0.1 0.5 0.000 0.000 -4.99 0.000 0.000 0.000 0.000 soil,k/ft -6.66 -5.33 shear,k -339.32 bmom, kft -329.98 -332.51 -334.92 -337.19 -341.33 0.01850 0.01860 0.01878 0.01870 tdisp,ft 0.01887 0.01895 0.00 AT 1st END and axial,k 0.00 AT 2nd END right half of span, at tenth point's of length span span span 0.6 0.7 span span 0.8 0.9 span 0.5 1.0 0.000 0.000 0.000 -4.99 -4.66 -4.33 0.000 0.000 soil,k/ft 0.000 shear,k -4.99 -3.33 -341.33 -343.20 -344.95 -346.56 0.01895 0.01902 0.01909 0.01916 -349.40 bmom, kft -348.04 tdisp,ft 0.01895 0.01921 0.01927 axial,k 0.00 AT 1st END and 0.00 AT 2nd END ELEMENT 7 DISPLACEMENTS IN INCIDENCES 13 14 15 0.19268E-01 NODE 0.0000E+00 0.85888E-04 13 NODE 14 NODE 15 0.19441E-01 0.21550E-04 0.00000E+00 0.00000E+00 0.19527E-01 0.00000E+00 FORCES ACTING ALONG THE 9 DOF 0.00000E+00 -0.33300E+01 NODE 13 0.34940E+03 NODE 14 0.0000E+00 0.33300E+01 -0.54570E-11 NODE 15 0.00000E+00 -0.86629E-10 -0.35583E+03 (-Di + Dj)* GJ + Vj*L - 3.33L/2 = Mj-Mi, where GJ=13776 -0.01850+0.01927)*13776-3.33*6-9.99=10.6-19.98- 9.99= -19.37 -349.40+329.98=-19.42 OK

Output Data Page 4

5-50 ELEMENT 7, FROM NODE 13, TO NODE 15 - LENGTH = 6.00 ft left half of span, at tenth points of length span span span span span span 0.0 0.2 0.3 0.4 0.5 0.1 soil,k/ft 0.000 0.000 0.000 0.000 0.000 0.000 shear,k -3.00 -3.33 -2.66 -2.33 -2.00 -1.67 -349.40 -350.62 -353.51 -354.22 bmom, kft -351.71-352.68 tdisp,ft axial,k 0.01927 0.01932 0.01936 0.01940 0.01943 0.01946 0.00 AT 1st END and 0.00 AT 2nd END right half of span, at tenth points of length span span span span span span 0.7 0.5 0.6 0.8 0.9 1.0 soil,k/ft 0.000 0.000 0.000 0.000 0.000 0.000 shear, k -1.67 -1.33 -0.67 -1.00 -0.33 0.00 -355.25 bmom, kft -354.22 -354.80 -355.57 -355.76-355.83 tdisp,ft 0.01949 0.01952 0.01946 0.01950 0.01952 0.01953 axial,k 0.00 AT 1st END and 0.00 AT 2nd END Local extreme twist angle and bi-moment in the TWB. Local extreme analog transverse displacement and moment in the EBC

Twist Angle, Ex. 5.5 from BMTORSWP

Twist Angle Derivative of DG9 Ex. 5.5 from BMTORSWP

Twist Angle 2nd Derivative of DG9 Ex. 5.5 from BMTORSWP

Twist Angle 3rd Derivative of DG9 Ex. 5.5 from BMTORSWP

BC Shear and TWB Torque of DG9 Ex. 5.5 from BMTORSWP

TWB Bimoment and BC Moment of Ex. DG 5.5 from BMTORSWP

St. Vt. Shear Stresses in Concave Side of Cross Section

St. Vt. Shear Stresses in Convex Side of Cross Section

Warping Shear Stress at s = 0,1,2,3 of Ex. 5.5 from BMTORSWP

Bending Shear Stresses along the Beam and Profile

At 23.2in from the left end of the beam at points s = 2 and 2' of the profile occurs the highest combined shear stress unnoticed by the AISC DG9 and shown here:

Total Shear Stresses in Concave Side of Profile

Total Shear Stresses in Convex Side of Profile

Warping Normal Stresses along Beam and Profile

Combined Normal Stresses along the Beam and Profile

 $\Theta_{Bmt} := \begin{pmatrix} 0 & 8.3 \times 10^{-3} & 0.018 & 0 \\ 0 & 4.061 \times 10^{-4} & 0 & 0 \\ 3.147 \times 10^{-5} & 0 & -1.368 \times 10^{-5} & 3.147 \times 10^{-5} \\ -1.614 \times 10^{-5} & 2.825 \times 10^{-7} & -1.44 \times 10^{-5} & 3.293 \times 10^{-5} \\ 3.293 \times 10^{-5} & 2.825 \times 10^{-7} & -1.44 \times 10^{-5} & 3.293 \times 10^{-5} \\ -1.617 \times 10^{-6} & -7.372 \times 10^{-7} & -2.073 \times 10^{-11} & -1.617 \times 10^{-6} \end{pmatrix} MTORSWP$

Torque Angles & its 3 Dimensionless Derivatives along the Span

Shear stress due to pure torsion $\tau_t = GJe^t$. Pure torsion shear stresses appear in matrix rows containing points of interest 0, 1, 2, 3 of the profile. Each matrix column contains the defined points of interest along the axial coordinate. Points 0, 1 and 2 of the profile have the same pure torsion shear stress because they have the same thickness $\tau_{tBmt}_{j,i} := G \cdot t_i \cdot \frac{\theta_{Bmt}_{1,j}}{in} \quad \tau_{t_{j,i}} := G \cdot t_i \cdot \frac{\theta_{1,j}}{in}$ $\tau_{tBmt} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 2.923 & 2.923 & 2.923 & 2.105 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \cdot ksi \begin{bmatrix} BMTORSW at \\ support \\ 0.2L \\ 0.5L \\ L \end{bmatrix}$ $\tau_t = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 2.843 & 2.843 & 2.843 & 2.047 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \cdot ksi \begin{bmatrix} AISC-DG9 & at \\ support \\ 0.2L \\ 0.5L \\ L \end{bmatrix}$

Shear Stresses due to Pure Torsion along the Span and Profile

Shear stress from warping at point "s" of the profile. Warping shear stresses along one profile appear in matrix rows containing points of interest 0, 1, 2, 3 of the profile. Matrix columns contain the defined points of interest along the axial coordinate

$$\begin{aligned} \tau_{\text{wBmt}_{j,i}} &\coloneqq \frac{-E}{t_{i}} \cdot S_{\text{w}_{i}} \cdot \left(\theta_{\text{Bmt}_{3,j}} \cdot \frac{1}{\text{in}^{3}}\right) & \tau_{\text{w}_{j,i}} &\coloneqq \frac{-E}{t_{i}} \cdot S_{\text{w}_{i}} \cdot \left(\theta_{3,j} \cdot \frac{1}{\text{in}^{3}}\right) \\ \tau_{\text{wBmt}} &= \begin{pmatrix} 0 & 1.306 & -1.013 & 0.703 \\ 0 & 0.595 & -0.462 & 0.321 \\ 0 & 0 & -0 & 0 \\ 0 & 1.306 & -1.013 & 0.703 \end{pmatrix} \cdot \begin{array}{c} \text{BMTORSW at} \\ \text{support} \\ 0.2L \\ 0.5L \\ L \\ \\ \text{u} \\ \text{support} \\ 0.5L \\ L \\ \\ \text{u} \\ \text{support} \\ 0.2L \\ 0.5L \\ L \\ \\ \text{u} \\ \text{support} \\ 0.2L \\ 0.5L \\ L \\ \\ \text{u} \\ \text{support} \\ 0.2L \\ 0.5L \\ L \\ \\ \text{u} \\ \text{support} \\ 0.2L \\ 0.5L \\ L \\ \\ \text{u} \\ \text{$$

Shear Stresses due to Restrained Warping along the Span and Profile

Warping normal stresses $\sigma_{WS} = E^*Wns^*\theta^*$ along one profile appear in a matrix row containing points of interest 0, 1, 2, 3 of the profile. Each matrix column contains the defined points of interest along the axial coordinate. $\sigma_{Wj,i} \coloneqq E \cdot W_{n_i} \cdot \left(\theta_{2,j} \cdot \frac{1}{in^2}\right) \qquad \sigma_{WBmt_{j,i}} \coloneqq E \cdot W_{n_i} \cdot \left(\theta_{Bmt_{2,j}} \cdot \frac{1}{in^2}\right)$ $\sigma_{WBmt} = \begin{pmatrix} 21.009 & 0 & -9.932 & 0\\ 0.18 & 0 & -0.085 & 0\\ -9.187 & 0 & 4.343 & 0\\ 21.009 & 0 & -9.932 & 0 \end{pmatrix} \cdot ksi \qquad \begin{array}{c} \text{BMTORSW at}\\ \text{support}\\ 0.2L\\ 0.5L\\ L \\ \end{array}$ $\sigma_{W} = \begin{pmatrix} 20.078 & 0 & -9.491 & 0\\ 0 & 0 & 0 & 0\\ -8.729 & 0 & 4.127 & 0\\ -8.729 & 0 & 4.127 & 0\\ 0.5L \\ \end{array}$

Normal Stresses due to Restrained Warping along the Span and Profile

Positive Directions

Location	Point	σw	бр	fun
Support	0	20.1(C)	8.41(T)	11.7(C) 12.5
1.2.65	1	0	8.41(T)	8.41(T) -8.4
	2	9.49(T)	8.41(T)	17.9(T) -18.3
	3	0	0	0 <mark>0</mark> .
Midspan	0	8.73(T)	4.20(C)	4.53(T)
1999 (1997) (1997) 1999 (1997) (1997)	1	0	4.20(C)	4.20(C)
	2	4.13(C)	4.20(C)	8.33(C)
	3	0	0	0
z/l = 0.20	0	0		
	1	0	<u></u>	1 <u>00100</u> 1
	2	0	-	-
	3	0		

Comparison of Total Normal Stresses along the Span and Profile

 $f_{un} := \sigma_w + \sigma \sigma_b$ $f_{unBmt} := \sigma_{wBmt} + \sigma \sigma_b$ 8.416 -18.347 0 BMTORSW at support -0.156 -0.337 -0.422 0 f_{unBmt} = -ksi -4.979 4.208 0.2L 8.551 0 0.5L 12.594 -8.416 -18.347 0 11.662 -8.416 -17.907 AISC-DG9 at -0.337 -0.337 -0.337 0 -4.522 4.208 8.334 0 support f_{un} = ksi 0.2L 0.5L 11.662 -8.416 -17.907 0 L

The maximum normal stress (tension) occurs at the support at point 2 in the flange. A discrepancy of 2.5% is noticed: 17.907 ksi and 18.347 ksi from DG9 and the software respectively. The AISC DG9 data have been recalculated to the third decimal place to be compared with BMTORSWP output calculated to the third decimal place.

Another Comparison of Total Normal Stresses along the Span and Profile

Location	Point	Tt	τw	ть	fur
Support	0	0	0	0	0
	1	0	1.30←	-	1.30←
	2	0	1.01←	1.23→	0.22→
	3	0	0.702↓	3.28↓	3.98↓
Midspan	0	0	0	0	0
	1	0	0	0	0
	2	0	0	0	0
	3	0	0	0	0
z/l = 0.20	0	2.84→	0	0	2.84↔
	1	2.84→	0.599←	-	3.44←
	2	2.84→	0.465←	0.740→	3.12→
	3	2.05	0.323↓	1.98↓	4.35↓
Maximum					4.35↓

The maximum shear stress occurs at z/L = 0.20 at point 3 in the web. A discrepancy of 1.3% is noticed: 4.340 ksi and 4.396 ksi from DG9 and the software respectively. The AISC DG9 data have been recalculated to the third decimal place to be compared with BMTORSWP output calculated to the third decimal place.

$\tau_{t} := \tau_t + \tau_t$	w + τι	Ь		$f_{uvBmt} := \tau_{tBmt} + \tau_{wBmt} + \tau_{t}$			
	(0	1.303	0.218	3.986	BMTORSW at		
	2.843	3.442	3.115	4.34	support		
f _{uv} =	0	0	0	0	·ksi 0.2L 0.5L		
	0)	1.303	-2.24	-2.582	/ L		

Comparison of Total Shear Stresses along the Span and Profile

	0	1 2						
		-41 _			G =	11200	ksi	
		3	9		E =	29000	ksi	
		A -	9.6		Cw=	852	in^6	
	ö	1' 2'	12					
Elmn	Z	θ	Tora	Bmnt	7	θ'	Z	θ"
1		•	1019		-	•	2	•
	0	0	-39.96	813.7299	0	0.000E+00	0	3.293E-05
	0.6	0	-39.63	789.9347	0.6	1.947E-05	0.6	3.197E-05
	1.2	0	-39.29	766.4978	1.2	3.837E-05	1.2	3.102E-05
	1.8	0.0001	-38.96	743.4146	1.8	5.670E-05	1.8	3.009E-05
	2.4	0.0001	-38.63	720.6804	2.4	7.448E-05	2.4	2.917E-05
	3	0.0001	-38.3	698.2907	3	9.170E-05	3	2.826E-05
	3.6	0.0002	-37.96	676.2409	3.6	1.084E-04	3.6	2.737E-05
	4.2	0.0003	-37.63	654.5267	4.2	1.246E-04	4.2	2.649E-05
	4.8	0.0004	-37.3	633.1436	4.8	1.402E-04	4.8	2.563E-05
	5.4	0.0004	-36.96	612.0874	5.4	1.553E-04	5.4	2.477E-05
	6	0.0005	-36.63	591.354	6	1.699E-04	6	2.393E-05
2	(0.0005	26.62	501.254	(1 (005 04		2 2025 05
	6	0.0005	-36.63	591.354	6	1.699E-04	6	2.393E-05
	0.0 7.2	0.0006	-30.3	570.939	0.0	1.840E-04	0.0 7.0	2.311E-05
	7.2	0.0008	-35.90	521 0492	7.2	1.9/0E-04	7.2	2.229E-05
	/.0 8/1	0.0009	-55.05	511 5643	/.0 8/1	2.106E-04	/.0 8/1	2.149E-03
	0.4 Q	0.001	-33.3	492 383	0.4	2.234E-04	0.4 Q	2.070E-03
	96	0.0013	-34 63	473 5003	96	2.550E 04 2 474E-04	96	1.996E-05
	10.2	0.0013	-34.3	454 9124	10.2	2.17 IE 01	10.2	1.910E 05
	10.8	0.0016	-33.97	436.6157	10.8	2.695E-04	10.8	1.767E-05
	11.4	0.0018	-33.63	418.6064	11.4	2.798E-04	11.4	1.694E-05
	12	0.0019	-33.3	400.8809	12	2.898E-04	12	1.622E-05
3								
	12	0.0019	-33.3	400.8809	12	2.898E-04	12	1.622E-05
	13.6	0.0024	-32.41	354.9737	13.6	3.142E-04	13.6	1.437E-05
	15.2	0.0029	-31.52	310.9942	15.2	3.358E-04	15.2	1.259E-05
	16.8	0.0035	-30.64	268.8796	16.8	3.546E-04	16.8	1.088E-05
	18.4	0.0041	-29.75	228.5698	18.4	3.707E-04	18.4	9.251E-06
	20	0.0047	-28.86	190.0072	20	3.842E-04	20	7.690E-06
	21.6	0.0053	-27.97	153.1369	21.6	3.953E-04	21.6	6.198E-06
	23.2	0.0059	-27.08	117.9061	23.2	4.041E-04	23.2	4.772E-06
	24.8	0.0066	-26.2	84.2646	24.8	4.106E-04	24.8	3.411E-06
	26.4	0.0073	-25.31	52.1643	26.4	4.150E-04	26.4	2.111E-06

Torque, Bimoment, Twist Angle and Derivatives

	28	0.0079	-24.42	21.5595	28	4.174E-04	28	8.720E-07
4								
	28	0.0079	-24.42	21.5595	28	4.174E-04	28	8.721E-07
	28.8	0.0083	-23.98	6.983	28.8	4.176E-04	28.8	2.825E-07
	29.6	0.0086	-23.53	-7.5935	29.6	4.178E-04	29.6	-3.072E-07
	31.2	0.0093	-22.64	-35.3365	31.2	4.164E-04	31.2	-1.430E-06
	32.8	0.0099	-21.76	-61.7089	32.8	4.133E-04	32.8	-2.497E-06
	34.4	0.0106	-20.87	-86.7484	34.4	4.085E-04	34.4	-3.511E-06
	36	0.0112	-19.98	-110.491	36	4.021E-04	36	-4.472E-06
	37.6	0.0119	-19.09	-132.97	37.6	3.942E-04	37.6	-5.382E-06
	39.2	0.0125	-18.2	-154.218	39.2	3.849E-04	39.2	-6.242E-06
	40.8	0.0131	-17.32	-174.265	40.8	3.743E-04	40.8	-7.053E-06
	42.4	0.0137	-16.43	-193.14	42.4	3.624E-04	42.4	-7.817E-06
	44	0.0143	-15.54	-210.87	44	3.493E-04	44	-8.535E-06
5								
	44	0.0143	-15.54	-210.87	44	3.493E-04	44	-8.535E-06
	45.6	0.0148	-14.65	-227.48	45.6	3.351E-04	45.6	-9.207E-06
	47.2	0.0153	-13.76	-242.993	47.2	3.198E-04	47.2	-9.834E-06
	48.8	0.0158	-12.88	-257.433	48.8	3.036E-04	48.8	-1.042E-05
	50.4	0.0163	-11.99	-270.818	50.4	2.865E-04	50.4	-1.096E-05
	52	0.0167	-11.1	-283.17	52	2.686E-04	52	-1.146E-05
	53.6	0.0172	-10.21	-294.505	53.6	2.499E-04	53.6	-1.192E-05
	55.2	0.0175	-9.324	-304.839	55.2	2.304E-04	55.2	-1.234E-05
	56.8	0.0179	-8.436	-314.188	56.8	2.104E-04	56.8	-1.272E-05
	58.4	0.0182	-7.548	-322.564	58.4	1.898E-04	58.4	-1.305E-05
	60	0.0185	-6.66	-329.979	60	1.686E-04	60	-1.336E-05
6								
	60	0.0185	-6.66	-329.979	60	1.686E-04	60	-1.336E-05
	60.6	0.0186	-6.327	-332.514	60.6	1.606E-04	60.6	-1.346E-05
	61.2	0.0187	-5.994	-334.917	61.2	1.525E-04	61.2	-1.355E-05
	61.8	0.0188	-5.661	-337.186	61.8	1.443E-04	61.8	-1.365E-05
	62.4	0.0189	-5.328	-339.324	62.4	1.361E-04	62.4	-1.373E-05
	63	0.0189	-4.995	-341.33	63	1.279E-04	63	-1.381E-05
	63.6	0.019	-4.662	-343.205	63.6	1.195E-04	63.6	-1.389E-05
	64.2	0.0191	-4.329	-344.948	64.2	1.112E-04	64.2	-1.396E-05
	64.8	0.0192	-3.996	-346.561	64.8	1.028E-04	64.8	-1.403E-05
L	65.4	0.0192	-3.663	-348.044	65.4	9.436E-05	65.4	-1.409E-05
	66	0.0193	-3.33	-349.397	66	8.589E-05	66	-1.414E-05
7								
	66	0.0193	-3.33	-349.397	66	8.589E-05	66	-1.414E-05
	66.6	0.0193	-2.997	-350.621	66.6	7.739E-05	66.6	-1.419E-05

(continued) Torque, Bimoment, Twist Angle and Derivatives

67.2	0.0194	-2.664	-351.714	67.2	6.886E-05	67.2	-1.423E-05
67.8	0.0194	-2.331	-352.679	67.8	6.031E-05	67.8	-1.427E-05
68.4	0.0194	-1.998	-353.515	68.4	5.173E-05	68.4	-1.431E-05
69	0.0195	-1.665	-354.222	69	4.314E-05	69	-1.434E-05
69.6	0.0195	-1.332	-354.8	69.6	3.453E-05	69.6	-1.436E-05
70.2	0.0195	-0.999	-355.249	70.2	2.591E-05	70.2	-1.438E-05
70.8	0.0195	-0.666	-355.57	70.8	1.728E-05	70.8	-1.439E-05
71.4	0.0195	-0.333	-355.763	71.4	8.640E-06	71.4	-1.440E-05
72	0.0195	0	-355.827	72	0.000E+00	72	-1.440E-05

(continued) Torque, Bimoment, Twist Angle and Derivatives

Table of Shear Stress due to Pure Torsion

	Pure	Torsi	on Sh	ear St	ress C	6*t*θ'		
	point	0	1	2	3	2'	1'	0'
	t=	0.625	0.625	0.625	0.450	0.625	0.625	0.625
θ'"	Z							
-1.617E-06	0	0.000	0.000	0.000	0.000	0.000	0.000	0.000
-1.593E-06	0.6	0.136	0.136	0.136	0.098	0.136	0.136	0.136
-1.569E-06	1.2	0.269	0.269	0.269	0.193	0.269	0.269	0.269
-1.545E-06	1.8	0.397	0.397	0.397	0.286	0.397	0.397	0.397
-1.522E-06	2.4	0.521	0.521	0.521	0.375	0.521	0.521	0.521
-1.499E-06	3	0.642	0.642	0.642	0.462	0.642	0.642	0.642
-1.476E-06	3.6	0.759	0.759	0.759	0.546	0.759	0.759	0.759
-1.453E-06	4.2	0.872	0.872	0.872	0.628	0.872	0.872	0.872
-1.431E-06	4.8	0.981	0.981	0.981	0.707	0.981	0.981	0.981
-1.409E-06	5.4	1.087	1.087	1.087	0.783	1.087	1.087	1.087
-1.388E-06	6	1.189	1.189	1.189	0.856	1.189	1.189	1.189
-1.388E-06	6	1.189	1.189	1.189	0.856	1.189	1.189	1.189
-1.366E-06	6.6	1.288	1.288	1.288	0.927	1.288	1.288	1.288
-1.345E-06	7.2	1.383	1.383	1.383	0.996	1.383	1.383	1.383
-1.325E-06	7.8	1.476	1.476	1.476	1.062	1.476	1.476	1.476
-1.304E-06	8.4	1.564	1.564	1.564	1.126	1.564	1.564	1.564
-1.284E-06	9	1.649	1.649	1.649	1.187	1.649	1.649	1.649
-1.264E-06	9.6	1.732	1.732	1.732	1.247	1.732	1.732	1.732
-1.244E-06	10.2	1.810	1.810	1.810	1.303	1.810	1.810	1.810
-1.224E-06	10.8	1.887	1.887	1.887	1.358	1.887	1.887	1.887
-1.205E-06	11.4	1.959	1.959	1.959	1.410	1.959	1.959	1.959
-1.186E-06	12	2.029	2.029	2.029	1.461	2.029	2.029	2.029
-1.185E-06	12	2.029	2.029	2.029	1.461	2.029	2.029	2.029
-1.136E-06	13.6	2.199	2.199	2.199	1.584	2.199	2.199	2.199

(continued	d) Ta	ble of	Shea	r Stres	ss due	to Pu	re Tor	sion
-1.089E-06	15.2	2.351	2.351	2.351	1.692	2.351	2.351	2.351
-1.042E-06	16.8	2.482	2.482	2.482	1.787	2.482	2.482	2.482
-9.974E-07	18.4	2.595	2.595	2.595	1.868	2.595	2.595	2.595
-9.538E-07	20	2.689	2.689	2.689	1.936	2.689	2.689	2.689
-9.116E-07	21.6	2.767	2.767	2.767	1.992	2.767	2.767	2.767
-8.707E-07	23.2	2.829	2.829	2.829	2.037	2.829	2.829	2.829
-8.312E-07	24.8	2.874	2.874	2.874	2.069	2.874	2.874	2.874
-7.931E-07	26.4	2.905	2.905	2.905	2.092	2.905	2.905	2.905
-7.563E-07	28	2.922	2.922	2.922	2.104	2.922	2.922	2.922
-7.551E-07	28	2.922	2.922	2.922	2.104	2.922	2.922	2.922
-7.37E-07	28.8	2.923	2.923	2.923	2.105	2.923	2.923	2.923
-7.193E-07	29.6	2.925	2.925	2.925	2.106	2.925	2.925	2.925
-6.843E-07	31.2	2.915	2.915	2.915	2.099	2.915	2.915	2.915
-6.502E-07	32.8	2.893	2.893	2.893	2.083	2.893	2.893	2.893
-6.169E-07	34.4	2.860	2.860	2.860	2.059	2.860	2.860	2.860
-5.845E-07	36	2.815	2.815	2.815	2.027	2.815	2.815	2.815
-5.528E-07	37.6	2.759	2.759	2.759	1.987	2.759	2.759	2.759
-5.221E-07	39.2	2.694	2.694	2.694	1.940	2.694	2.694	2.694
-4.921E-07	40.8	2.620	2.620	2.620	1.886	2.620	2.620	2.620
-4.630E-07	42.4	2.537	2.537	2.537	1.826	2.537	2.537	2.537
-4.347E-07	44	2.445	2.445	2.445	1.760	2.445	2.445	2.445
-4.338E-07	44	2.445	2.445	2.445	1.760	2.445	2.445	2.445
-4.061E-07	45.6	2.346	2.346	2.346	1.689	2.346	2.346	2.346
-3.788E-07	47.2	2.239	2.239	2.239	1.612	2.239	2.239	2.239
-3.519E-07	48.8	2.125	2.125	2.125	1.530	2.125	2.125	2.125
-3.255E-07	50.4	2.006	2.006	2.006	1.444	2.006	2.006	2.006
-2.995E-07	52	1.880	1.880	1.880	1.354	1.880	1.880	1.880
-2.739E-07	53.6	1.749	1.749	1.749	1.259	1.749	1.749	1.749
-2.488E-07	55.2	1.613	1.613	1.613	1.161	1.613	1.613	1.613
-2.241E-07	56.8	1.473	1.473	1.473	1.060	1.473	1.473	1.473
-1.998E-07	58.4	1.329	1.329	1.329	0.957	1.329	1.329	1.329
-1.760E-07	60	1.180	1.180	1.180	0.850	1.180	1.180	1.180
-1.755E-07	60	1.180	1.180	1.180	0.850	1.180	1.180	1.180
-1.665E-07	60.6	1.124	1.124	1.124	0.809	1.124	1.124	1.124
-1.576E-07	61.2	1.068	1.068	1.068	0.769	1.068	1.068	1.068
-1.486E-07	61.8	1.010	1.010	1.010	0.727	1.010	1.010	1.010
-1.397E-07	62.4	0.953	0.953	0.953	0.686	0.953	0.953	0.953
-1.309E-07	63	0.895	0.895	0.895	0.645	0.895	0.895	0.895
-1.220E-07	63.6	0.837	0.837	0.837	0.602	0.837	0.837	0.837

(continued	l) Ta	ble of	Shea	r Stres	ss due	to Pu	re Toi	sion
-1.132E-07	64.2	0.778	0.778	0.778	0.560	0.778	0.778	0.778
-1.044E-07	64.8	0.720	0.720	0.720	0.518	0.720	0.720	0.720
-9.565E-08	65.4	0.661	0.661	0.661	0.476	0.661	0.661	0.661
-8.691E-08	66	0.601	0.601	0.601	0.433	0.601	0.601	0.601
-8.687E-08	66	0.601	0.601	0.601	0.433	0.601	0.601	0.601
-7.814E-08	66.6	0.542	0.542	0.542	0.390	0.542	0.542	0.542
-6.943E-08	67.2	0.482	0.482	0.482	0.347	0.482	0.482	0.482
-6.072E-08	67.8	0.422	0.422	0.422	0.304	0.422	0.422	0.422
-5.202E-08	68.4	0.362	0.362	0.362	0.261	0.362	0.362	0.362
-4.333E-08	69	0.302	0.302	0.302	0.217	0.302	0.302	0.302
-3.465E-08	69.6	0.242	0.242	0.242	0.174	0.242	0.242	0.242
-2.598E-08	70.2	0.181	0.181	0.181	0.131	0.181	0.181	0.181
-1.732E-08	70.8	0.121	0.121	0.121	0.087	0.121	0.121	0.121
-8.666E-09	71.4	0.060	0.060	0.060	0.044	0.060	0.060	0.060
-2.073E-11	72	0.000	0.000	0.000	0.000	0.000	0.000	0.000

Table of Warping Shear Stress Data

	Warping shear stress at "s", - $E*Sw*\theta$ "'/ t									
	0	1	2	3	2'	1'	0'			
Sw	0.00	-17.40	-13.50	6.75	-13.50	-17.40	0.00			
Z										
0	0	-1.306	-1.013	0.703	-1.013	-1.306	0			
0.6	0	-1.286	-0.998	0.693	-0.998	-1.286	0			
1.2	0	-1.267	-0.983	0.683	-0.983	-1.267	0			
1.8	0	-1.247	-0.968	0.672	-0.968	-1.247	0			
2.4	0	-1.229	-0.953	0.662	-0.953	-1.229	0			
3	0	-1.210	-0.939	0.652	-0.939	-1.210	0			
3.6	0	-1.192	-0.925	0.642	-0.925	-1.192	0			
4.2	0	-1.173	-0.910	0.632	-0.910	-1.173	0			
4.8	0	-1.155	-0.896	0.622	-0.896	-1.155	0			
5.4	0	-1.138	-0.883	0.613	-0.883	-1.138	0			
6	0	-1.121	-0.869	0.604	-0.869	-1.121	0			
6	0	-1.121	-0.869	0.604	-0.869	-1.121	0			
6.6	0	-1.103	-0.856	0.594	-0.856	-1.103	0			
7.2	0	-1.086	-0.843	0.585	-0.843	-1.086	0			
7.8	0	-1.070	-0.830	0.576	-0.830	-1.070	0			
8.4	0	-1.053	-0.817	0.567	-0.817	-1.053	0			
9	0	-1.037	-0.804	0.559	-0.804	-1.037	0			
9.6	0	-1.021	-0.792	0.550	-0.792	-1.021	0			
10.2	0	-1.004	-0.779	0.541	-0.779	-1.004	0			

(contin	ilucu) Ia		arping	Shear Su	USS Data
10.80	-0.988	-0.767	0.532	-0.767	-0.9880
11.40	-0.973	-0.755	0.524	-0.755	-0.9730
120	-0.958	-0.743	0.516	-0.743	-0.9580
120	-0.957	-0.742	0.515	-0.742	-0.9570
13.60	-0.917	-0.712	0.494	-0.712	-0.9170
15.20	-0.879	-0.682	0.474	-0.682	-0.8790
16.80	-0.841	-0.653	0.453	-0.653	-0.8410
18.40	-0.805	-0.625	0.434	-0.625	-0.8050
200	-0.770	-0.597	0.415	-0.597	-0.7700
21.60	-0.736	-0.571	0.397	-0.571	-0.7360
23.20	-0.703	-0.545	0.379	-0.545	-0.7030
24.80	-0.671	-0.521	0.362	-0.521	-0.6710
26.40	-0.640	-0.497	0.345	-0.497	-0.6400
280	-0.611	-0.474	0.329	-0.474	-0.6110
280	-0.610	-0.473	0.328	-0.473	-0.6100
28.80	-0.595	-0.462	0.321	-0.462	-0.5950
29.60	-0.581	-0.451	0.313	-0.451	-0.5810
31.20	-0.552	-0.429	0.298	-0.429	-0.5520
32.80	-0.525	-0.407	0.283	-0.407	-0.5250
34.40	-0.498	-0.386	0.268	-0.386	-0.4980
36 0	-0.472	-0.366	0.254	-0.366	-0.4720
37.60	-0.446	-0.346	0.240	-0.346	-0.4460
39.20	-0.422	-0.327	0.227	-0.327	-0.4220
40.80	-0.397	-0.308	0.214	-0.308	-0.3970
42.40	-0.374	-0.290	0.201	-0.290	-0.3740
44 0	-0.351	-0.272	0.189	-0.272	-0.3510
440	-0.350	-0.272	0.189	-0.272	-0.3500
45.60	-0.328	-0.254	0.177	-0.254	-0.3280
47.20	-0.306	-0.237	0.165	-0.237	-0.3060
48.80	-0.284	-0.220	0.153	-0.220	-0.2840
50.40	-0.263	-0.204	0.142	-0.204	-0.2630
520	-0.242	-0.188	0.130	-0.188	-0.2420
53.60	-0.221	-0.172	0.119	-0.172	-0.2210
55.20	-0.201	-0.156	0.108	-0.156	-0.2010
56.80	-0.181	-0.140	0.097	-0.140	-0.1810
58.40	-0.161	-0.125	0.087	-0.125	-0.1610
60 0	-0.142	-0.110	0.077	-0.110	-0.1420
60 0	-0.142	-0.110	0.076	-0.110	-0.1420
<u>60.6</u> 0	-0.134	-0.104	0.072	-0.104	-0.1340

(continued) Table of Warping Shear Stress Data

(comm	nucu) ra		arping	Shear Su	USS Data
61.20	-0.127	-0.099	0.069	-0.099	-0.1270
61.80	-0.120	-0.093	0.065	-0.093	-0.1200
62.40	-0.113	-0.088	0.061	-0.088	-0.1130
<mark>63</mark> 0	-0.106	-0.082	0.057	-0.082	-0.1060
63.6 0	-0.098	-0.076	0.053	-0.076	-0.0980
64.20	-0.091	-0.071	0.049	-0.071	-0.0910
64.80	-0.084	-0.065	0.045	-0.065	-0.0840
65.40	-0.077	-0.060	0.042	-0.060	-0.0770
<mark>66</mark> 0	-0.070	-0.054	0.038	-0.054	-0.0700
<mark>66</mark> 0	-0.070	-0.054	0.038	-0.054	-0.0700
<u>66.6</u> 0	-0.063	-0.049	0.034	-0.049	-0.0630
67.20	-0.056	-0.043	0.030	-0.043	-0.0560
67.80	-0.049	-0.038	0.026	-0.038	-0.0490
68.40	-0.042	-0.033	0.023	-0.033	-0.0420
<mark>69</mark> 0	-0.035	-0.027	0.019	-0.027	-0.0350
<u>69.6</u> 0	-0.028	-0.022	0.015	-0.022	-0.0280
70.20	-0.021	-0.016	0.011	-0.016	-0.0210
70.80	-0.014	-0.011	0.008	-0.011	-0.0140
71.40	-0.007	-0.005	0.004	-0.005	-0.0070
720	0.000	0.000	0.000	0.000	0.0000

(continued) Table of Warping Shear Stress Data

Table of Warping Normal Stresses

Warping Normal Stresses, E*Wn/0" 0 1 2 3 2' 1' 0' Wn 22.00 0.00 -10.4 0.00 10.40 0.00 -22.00 z 0 1 2 3 2' 1' 0' wn 22.00 0.00 -10.4 0.00 10.40 0.00 -22.00 z 0 21.009 0 -9.932 0 9.932 0 -21.009 0.6 20.397 0 -9.932 0 9.932 0 -21.009 0.6 20.397 0 -9.9356 0 9.9356 0 -21.009 0.6 20.397 0 -9.642 0 9.042 0 -20.397 1.2 19.791 0 -9.356 0 9.356 0 -19.197 1.8 19.197 0 -9.075 0 9.075 0 -18.610 3 18.030 <								
	0	1	2	3	2'	1'	0'	
Wn	22.00	0.00	-10.4	0.00	10.40	0.00	-22.00	
Z								
0	21.009	0	-9.932	0	9.932	0	-21.009	
0.6	20.397	0	-9.642	0	9.642	0	-20.397	
1.2	19.791	0	-9.356	0	9.356	0	-19.791	
1.8	19.197	0	-9.075	0	9.075	0	-19.197	
2.4	18.610	0	-8.798	0	8.798	0	-18.610	
3	18.030	0	-8.523	0	8.523	0	-18.030	
3.6	17.462	0	-8.255	0	8.255	0	-17.462	
4.2	16.901	0	-7.989	0	7.989	0	-16.901	
4.8	16.352	0	-7.730	0	7.730	0	-16.352	
5.4	15.803	0	-7.471	0	7.471	0	-15.803	
6	15.267	0	-7.217	0	7.217	0	-15.267	
6	15.267	0	-7.217	0	7.217	0	-15.267	
6.6	14.744	0	-6.970	0	6.970	0	-14.744	
7.2	14.221	0	-6.723	0	6.723	0	-14.221	

(•••	Sinchina Ca) I	uU	ie or mar	Р	19 1 01110	~1	000000
7.	8 13.711	0	-6.481	0	6.481	0	-13.711
8.4	4 13.207	0	-6.243	0	6.243	0	-13.207
	9 12.715	0	-6.011	0	6.011	0	-12.715
9.	6 12.224	0	-5.779	0	5.779	0	-12.224
10.	2 11.746	0	-5.552	0	5.552	0	-11.746
10.	8 11.273	0	-5.329	0	5.329	0	-11.273
11.4	4 10.808	0	-5.109	0	5.109	0	-10.808
1.	2 10.348	0	-4.892	0	4.892	0	-10.348
12	2 10.348	0	-4.892	0	4.892	0	-10.348
13.	6 9.168	0	-4.334	0	4.334	0	-9.168
15.	2 8.032	0	-3.797	0	3.797	0	-8.032
16.	<mark>8</mark> 6.941	0	-3.281	0	3.281	0	-6.941
18.	4 5.902	0	-2.790	0	2.790	0	-5.902
2	0 4.906	0	-2.319	0	2.319	0	-4.906
21.	6 3.954	0	-1.869	0	1.869	0	-3.954
23.	2 3.045	0	-1.439	0	1.439	0	-3.045
24.	8 2.176	0	-1.029	0	1.029	0	-2.176
26.4	4 1.347	0	-0.637	0	0.637	0	-1.347
2	8 0.556	0	-0.263	0	0.263	0	-0.556
2	8 0.556	0	-0.263	0	0.263	0	-0.556
28.	8 0.180	0	-0.085	0	0.085	0	-0.180
29.	6 -0.196	0	0.093	0	-0.093	0	0.196
31.	2 -0.912	0	0.431	0	-0.431	0	0.912
32.	<mark>8</mark> -1.593	0	0.753	0	-0.753	0	1.593
34.	4 -2.240	0	1.059	0	-1.059	0	2.240
3	6 -2.853	0	1.349	0	-1.349	0	2.853
37.	6 -3.434	0	1.623	0	-1.623	0	3.434
39.	2 -3.982	0	1.883	0	-1.883	0	3.982
40.	<mark>8</mark> -4.500	0	2.127	0	-2.127	0	4.500
42.4	4 -4.987	0	2.358	0	-2.358	0	4.987
4	4 -5.445	0	2.574	0	-2.574	0	5.445
4	4 -5.445	0	2.574	0	-2.574	0	5.445
45.	<mark>6 -</mark> 5.874	0	2.777	0	-2.777	0	5.874
47.	2 -6.274	0	2.966	0	-2.966	0	6.274
48.	<mark>8</mark> -6.648	0	3.143	0	-3.143	0	6.648
50.4	4 -6.992	0	3.306	0	-3.306	0	6.992
5	2 -7.311	0	3.456	0	-3.456	0	7.311
53.	<mark>6</mark> -7.605	0	3.595	0	-3.595	0	7.605
55.	-7.873	0	3.722	0	-3.722	0	7.873

(continued)Table of Warping Normal Stresses

1 500	0 11-		1 2 0 2 1		്റററ		0.115
56.8	-8.115	0	3.836	0	-3.836	0	8.115
58.4	-8.326	0	3.936	0	-3.936	0	8.326
60	-8.524	0	4.029	0	-4.029	0	8.524
60	-8.524	0	4.029	0	-4.029	0	8.524
60.6	-8.587	0	4.060	0	-4.060	0	8.587
61.2	-8.645	0	4.087	0	-4.087	0	8.645
61.8	-8.709	0	4.117	0	-4.117	0	8.709
62.4	-8.760	0	4.141	0	-4.141	0	8.760
63	-8.811	0	4.165	0	-4.165	0	8.811
63.6	-8.862	0	4.189	0	-4.189	0	8.862
64.2	-8.906	0	4.210	0	-4.210	0	8.906
64.8	-8.951	0	4.231	0	-4.231	0	8.951
65.4	-8.989	0	4.250	0	-4.250	0	8.989
66	-9.021	0	4.265	0	-4.265	0	9.021
66	-9.021	0	4.265	0	-4.265	0	9.021
66.6	-9.053	0	4.280	0	-4.280	0	9.053
67.2	-9.079	0	4.292	0	-4.292	0	9.079
67.8	-9.104	0	4.304	0	-4.304	0	9.104
68.4	-9.130	0	4.316	0	-4.316	0	9.130
69	-9.149	0	4.325	0	-4.325	0	9.149
69.6	-9.162	0	4.331	0	-4.331	0	9.162
70.2	-9.174	0	4.337	0	-4.337	0	9.174
70.8	-9.181	0	4.340	0	-4.340	0	9.181
71.4	-9.187	0	4.343	0	-4.343	0	9.187
72	-9.187	0	4.343	0	-4.343	0	9.187

(continued)Table of Warping Normal Stresses

-				-				
H	Bend	ing N	orma	l Stre	sses,	M/ \$	Sx	
		1	1	1	0	-1	-1	-1
Mus	Z							
-518.40	0	-8.42	-8.42	-8.42	0.00	8.42	8.42	8.42
-505.49	0.6	-8.21	-8.21	-8.21	0	8.21	8.21	8.21
-492.70	1.2	-8.00	-8.00	-8.00	0	8.00	8.00	8.00
-480.01	1.8	-7.79	-7.79	-7.79	0	7.79	7.79	7.79
-467.42	2.4	-7.59	-7.59	-7.59	0	7.59	7.59	7.59
-454.95	3	-7.39	-7.39	-7.39	0	7.39	7.39	7.39
-442.58	3.6	-7.18	-7.18	-7.18	0	7.18	7.18	7.18
-430.33	4.2	-6.99	-6.99	-6.99	0	6.99	6.99	6.99
-418.18	4.8	-6.79	-6.79	-6.79	0	6.79	6.79	6.79
-406.13	5.4	-6.59	-6.59	-6.59	0	6.59	6.59	6.59
-394.20	6	-6.40	-6.40	-6.40	0	6.40	6.40	6.40
-394.20	6	-6.40	-6.40	-6.40	0	6.40	6.40	6.40
-382.37	6.6	-6.21	-6.21	-6.21	0	6.21	6.21	6.21
-370.66	7.2	-6.02	-6.02	-6.02	0	6.02	6.02	6.02
-359.05	7.8	-5.83	-5.83	-5.83	0	5.83	5.83	5.83
-347.54	8.4	-5.64	-5.64	-5.64	0	5.64	5.64	5.64
-336.15	9	-5.46	-5.46	-5.46	0	5.46	5.46	5.46
-324.86	9.6	-5.27	-5.27	-5.27	0	5.27	5.27	5.27
-313.69	10.2	-5.09	-5.09	-5.09	0	5.09	5.09	5.09
-302.62	10.8	-4.91	-4.91	-4.91	0	4.91	4.91	4.91
-291.65	11.4	-4.73	-4.73	-4.73	0	4.73	4.73	4.73
-280.80	12	-4.56	-4.56	-4.56	0	4.56	4.56	4.56
-280.80	12	-4.56	-4.56	-4.56	0	4.56	4.56	4.56
-252.38	13.6	-4.10	-4.10	-4.10	0	4.10	4.10	4.10
-224.74	15.2	-3.65	-3.65	-3.65	0	3.65	3.65	3.65
-197.86	16.8	-3.21	-3.21	-3.21	0	3.21	3.21	3.21
-171.74	18.4	-2.79	-2.79	-2.79	0	2.79	2.79	2.79
-146.40	20	-2.38	-2.38	-2.38	0	2.38	2.38	2.38
-121.82	21.6	-1.98	-1.98	-1.98	0	1.98	1.98	1.98
-98.02	23.2	-1.59	-1.59	-1.59	0	1.59	1.59	1.59
-74.98	24.8	-1.22	-1.22	-1.22	0	1.22	1.22	1.22
-52.70	26.4	-0.86	-0.86	-0.86	0	0.86	0.86	0.86
-31.20	28	-0.51	-0.51	-0.51	0	0.51	0.51	0.51
-31.20	28	-0.51	-0.51	-0.51	0	0.51	0.51	0.51
-20.74	28.8	-0.34	-0.34	-0.34	0	0.34	0.34	0.34
-10.46	29.6	-0.17	-0.17	-0.17	0	0.17	0.17	0.17

Table of Bending Normal Stresses

•	Jonuna	u 1	auto		unan		, , , 011	inui D	
Ì	9.50	31.2	0.15	0.15	0.15	0	-0.15	-0.15	-0.15
	28.70	32.8	0.47	0.47	0.47	0	-0.47	-0.47	-0.47
	47.14	34.4	0.77	0.77	0.77	0	-0.77	-0.77	-0.77
	64.80	36	1.05	1.05	1.05	0	-1.05	-1.05	-1.05
	81.70	37.6	1.33	1.33	1.33	0	-1.33	-1.33	-1.33
	97.82	39.2	1.59	1.59	1.59	0	-1.59	-1.59	-1.59
	113.18	40.8	1.84	1.84	1.84	0	-1.84	-1.84	-1.84
	127.78	42.4	2.07	2.07	2.07	0	-2.07	-2.07	-2.07
	141.60	44	2.30	2.30	2.30	0	-2.30	-2.30	-2.30
	141.60	44	2.30	2.30	2.30	0	-2.30	-2.30	-2.30
	154.66	45.6	2.51	2.51	2.51	0	-2.51	-2.51	-2.51
	166.94	47.2	2.71	2.71	2.71	0	-2.71	-2.71	-2.71
	178.46	48.8	2.90	2.90	2.90	0	-2.90	-2.90	-2.90
	189.22	50.4	3.07	3.07	3.07	0	-3.07	-3.07	-3.07
	199.20	52	3.23	3.23	3.23	0	-3.23	-3.23	-3.23
	208.42	53.6	3.38	3.38	3.38	0	-3.38	-3.38	-3.38
	216.86	55.2	3.52	3.52	3.52	0	-3.52	-3.52	-3.52
	224.54	56.8	3.65	3.65	3.65	0	-3.65	-3.65	-3.65
	231.46	58.4	3.76	3.76	3.76	0	-3.76	-3.76	-3.76
	237.60	60	3.86	3.86	3.86	0	-3.86	-3.86	-3.86
	237.60	60	3.86	3.86	3.86	0	-3.86	-3.86	-3.86
	239.71	60.6	3.89	3.89	3.89	0	-3.89	-3.89	-3.89
	241.70	61.2	3.92	3.92	3.92	0	-3.92	-3.92	-3.92
	243.59	61.8	3.95	3.95	3.95	0	-3.95	-3.95	-3.95
	245.38	62.4	3.98	3.98	3.98	0	-3.98	-3.98	-3.98
	247.05	63	4.01	4.01	4.01	0	-4.01	-4.01	-4.01
	248.62	63.6	4.04	4.04	4.04	0	-4 04	-4.04	-4.04
	250.07	6/ 2	100			v			
		04.2	4.06	4.06	4.06	0	-4.06	-4.06	-4.06
	251.42	64.8	4.06 4.08	4.06 4.08	4.06 4.08	0 0	-4.06 -4.08	-4.06 -4.08	-4.06 -4.08
	251.42 252.67	64.8 65.4	4.06 4.08 4.10	4.06 4.08 4.10	4.06 4.08 4.10	0 0 0	-4.06 -4.08 -4.10	-4.06 -4.08 -4.10	-4.06 -4.08 -4.10
	251.42 252.67 253.80	64.8 65.4 66	4.06 4.08 4.10 4.12	4.06 4.08 4.10 4.12	4.06 4.08 4.10 4.12	0 0 0 0	-4.06 -4.08 -4.10 -4.12	-4.06 -4.08 -4.10 -4.12	-4.06 -4.08 -4.10 -4.12
	251.42 252.67 253.80	64.8 65.4 66	4.06 4.08 4.10 4.12	4.06 4.08 4.10 4.12	4.06 4.08 4.10 4.12	0 0 0 0	-4.06 -4.08 -4.10 -4.12	-4.06 -4.08 -4.10 -4.12	-4.06 -4.08 -4.10 -4.12
	251.42 252.67 253.80 253.80	64.8 65.4 66	4.06 4.08 4.10 4.12 4.12	4.06 4.08 4.10 4.12 4.12	4.06 4.08 4.10 4.12 4.12	0 0 0 0	-4.06 -4.08 -4.10 -4.12 -4.12	-4.06 -4.08 -4.10 -4.12 -4.12	-4.06 -4.08 -4.10 -4.12 -4.12
	251.42 252.67 253.80 253.80 254.83	64.8 65.4 66 66 66	4.06 4.08 4.10 4.12 4.12 4.14	4.06 4.08 4.10 4.12 4.12 4.14	4.06 4.08 4.10 4.12 4.12 4.14	0 0 0 0 0	-4.06 -4.08 -4.10 -4.12 -4.12 -4.14	-4.06 -4.08 -4.10 -4.12 -4.12 -4.12 -4.14	-4.06 -4.08 -4.10 -4.12 -4.12 -4.12 -4.14
	251.42 252.67 253.80 253.80 254.83 255.74	64.2 64.8 65.4 66 66 66 66 67.2	4.06 4.08 4.10 4.12 4.12 4.14 4.15	4.06 4.08 4.10 4.12 4.12 4.14 4.14 4.15	4.06 4.08 4.10 4.12 4.12 4.14 4.14	0 0 0 0 0 0	-4.06 -4.08 -4.10 -4.12 -4.12 -4.14 -4.15	-4.06 -4.08 -4.10 -4.12 -4.12 -4.12 -4.14 -4.15	-4.06 -4.08 -4.10 -4.12 -4.12 -4.14 -4.15
	251.42 252.67 253.80 253.80 254.83 255.74 255.74 256.5	64.2 64.8 65.4 66 66 66 67.2 67.8	$4.06 \\ 4.08 \\ 4.10 \\ 4.12 \\ 4.12 \\ 4.14 \\ 4.14 \\ 4.15 \\ 4.16 \\ $	4.06 4.08 4.10 4.12 4.12 4.14 4.14 4.15 4.16	4.06 4.08 4.10 4.12 4.12 4.14 4.14 4.15 4.16		-4.06 -4.08 -4.10 -4.12 -4.12 -4.14 -4.15 -4.16	-4.06 -4.08 -4.10 -4.12 -4.12 -4.14 -4.15 -4.16	-4.06 -4.08 -4.10 -4.12 -4.12 -4.12 -4.14 -4.15 -4.16
	251.42 252.67 253.80 253.80 254.83 255.74 256.55 257.26	64.2 64.8 65.4 66 66 66.6 67.2 67.8 68.4	$ \begin{array}{r} 4.06 \\ 4.08 \\ 4.10 \\ 4.12 \\ \overline{4.12} \\ \overline{4.14} \\ 4.15 \\ \overline{4.16} \\ \overline{4.18} \\ \end{array} $	4.06 4.08 4.10 4.12 4.12 4.14 4.15 4.16 4.18	4.06 4.08 4.10 4.12 4.12 4.14 4.15 4.16 4.18		-4.06 -4.08 -4.10 -4.12 -4.12 -4.12 -4.14 -4.15 -4.16 -4.18	-4.06 -4.08 -4.10 -4.12 -4.12 -4.12 -4.14 -4.15 -4.16 -4.18	-4.06 -4.08 -4.10 -4.12 -4.12 -4.14 -4.14 -4.15 -4.16 -4.18
	251.42 252.67 253.80 253.80 254.83 255.74 255.74 256.55 257.26 257.26	64.2 64.8 65.4 66 66 66 66 67.2 67.8 68.4 69	$ \begin{array}{r} 4.06 \\ 4.08 \\ 4.10 \\ 4.12 \\ 4.12 \\ 4.14 \\ 4.15 \\ 4.16 \\ 4.18 \\ 4.19 \\ \end{array} $	4.06 4.08 4.10 4.12 4.12 4.14 4.14 4.15 4.16 4.18 4.19	$ \begin{array}{r} 4.06 \\ 4.08 \\ 4.10 \\ 4.12 \\ 4.12 \\ 4.14 \\ 4.15 \\ 4.16 \\ 4.18 \\ 4.19 \\ \end{array} $		-4.06 -4.08 -4.10 -4.12 -4.12 -4.12 -4.14 -4.15 -4.16 -4.18 -4.19	-4.06 -4.08 -4.10 -4.12 -4.12 -4.12 -4.14 -4.15 -4.16 -4.18 -4.19	-4.06 -4.08 -4.10 -4.12 -4.12 -4.12 -4.14 -4.15 -4.16 -4.18 -4.19
	251.42 252.67 253.80 253.80 254.83 255.74 256.55 257.26 257.85 257.85 258.34	64.2 64.8 65.4 66 66 66 67.2 67.8 68.4 69 69.60	$ \begin{array}{r} 4.06 \\ 4.08 \\ 4.10 \\ 4.12 \\ \overline{4.12} \\ \overline{4.14} \\ 4.15 \\ \overline{4.16} \\ 4.18 \\ 4.19 \\ 4.19 \\ 4.19 \\ \end{array} $	$ \begin{array}{r} 4.06 \\ 4.08 \\ 4.10 \\ 4.12 \\ 4.12 \\ 4.14 \\ 4.15 \\ 4.16 \\ 4.18 \\ 4.19 \\ $	$ \begin{array}{r} 4.06 \\ 4.08 \\ 4.10 \\ 4.12 \\ 4.12 \\ 4.14 \\ 4.15 \\ 4.16 \\ 4.18 \\ 4.19 \\ $		-4.06 -4.08 -4.10 -4.12 -4.12 -4.14 -4.15 -4.16 -4.18 -4.19 -4.19	-4.06 -4.08 -4.10 -4.12 -4.12 -4.12 -4.14 -4.15 -4.16 -4.18 -4.19 -4.19	$-4.06 \\ -4.08 \\ -4.10 \\ -4.12 \\ -4.12 \\ -4.14 \\ -4.15 \\ -4.16 \\ -4.18 \\ -4.19 \\ -4.1$

(continued) Table of Bending Normal Stresses

(continue	ed) T	able	of B	Bendi	n	g Nor	mal S	Stresse	es
258.98	70.8	4.20	4.20	4.20	0	4.20	-4.20	-4.20	
259.15	71.4	4.21	4.21	4.21	0	-4.21	-4.21	-4.21	
259.20	72	4.21	4.21	4.21	0	-4.21	-4.21	-4.21	

Vu=	21.6	В	ending	Shear	Stres	ses, V	'*Q/ I*1	t
		Ix	554					
	t	0.625	0.625	0.625	0.450	0.625	0.625	1
	Q	0	13.380	19.70	37.90	19.70	13.380	0.00
Shear	Z							
21.60	0.0	0	0.835	1.229	3.284	1.229	0.835	0
21.42	0.6	0	0.828	1.219	3.256	1.219	0.828	0
21.24	1.2	0	0.821	1.208	3.229	1.208	0.821	0
21.06	1.8	0	0.814	1.198	3.202	1.198	0.814	0
20.88	2.4	0	0.807	1.188	3.174	1.188	0.807	0
20.70	3.0	0	0.800	1.178	3.147	1.178	0.800	0
20.52	3.6	0	0.793	1.167	3.120	1.167	0.793	0
20.34	4.2	0	0.786	1.157	3.092	1.157	0.786	0
20.16	4.8	0	0.779	1.147	3.065	1.147	0.779	0
19.98	5.4	0	0.772	1.137	3.037	1.137	0.772	0
19.80	6.0	0	0.765	1.127	3.010	1.127	0.765	0
19.80	6.0	0	0.765	1.127	3.010	1.127	0.765	0
19.62	6.6	0	0.758	1.116	2.983	1.116	0.758	0
19.44	7.2	0	0.751	1.106	2.955	1.106	0.751	0
19.26	7.8	0	0.744	1.096	2.928	1.096	0.744	0
19.08	8.4	0	0.737	1.086	2.901	1.086	0.737	0
18.90	9.0	0	0.730	1.075	2.873	1.075	0.730	0
18.72	9.6	0	0.723	1.065	2.846	1.065	0.723	0
18.54	10.2	0	0.716	1.055	2.819	1.055	0.716	0
18.36	10.8	0	0.709	1.045	2.791	1.045	0.709	0
18.18	11.4	0	0.703	1.034	2.764	1.034	0.703	0
18.00	12.0	0	0.696	1.024	2.736	1.024	0.696	0
18.00	12.0	0	0.696	1.024	2.736	1.024	0.696	0
17.52	13.6	0	0.677	0.997	2.663	0.997	0.677	0
17.04	15.2	0	0.658	0.969	2.591	0.969	0.658	0
16.56	16.8	0	0.640	0.942	2.518	0.942	0.640	0
16.08	18.4	0	0.621	0.915	2.445	0.915	0.621	0
15.60	20.0	0	0.603	0.888	2.372	0.888	0.603	0
15.12	21.6	0	0.584	0.860	2.299	0.860	0.584	0

Table of Bending Shear Stresses

contin	iucuj		au			DU	lung	01	licar	Su	033	sc.
14.64	23.2	0	0.56	66	0.	833	2.226	0.	.833	0.5	66	0
14.16	24.8	0	0.54	17	0.	806	2.153	0.	.806	0.54	47	0
13.68	26.4	0	0.52	29	0.	778	2.080	0.	.778	0.52	29	0
13.20	28.0	0	0.51	0	0.	751	2.007	0.	.751	0.5	10	0
13.20	28.0	0	0.51	0	0.	751	2.007	0.	.751	0.5	10	0
12.96	28.8	0	0.50)1	0.	737	1.970	0.	.737	0.5	01	0
12.72	29.6	0	0.49	92	0.	724	1.934	0.	.724	0.4	92	0
12.24	31.2	0	0.47	73	0.	696	1.861	0.	.696	0.4	73	0
11.76	32.8	0	0.45	54	0.	669	1.788	0.	.669	0.4	54	0
11.28	34.4	0	0.43	36	0.	642	1.715	0.	.642	0.4	36	0
10.80	36.0	0	0.41	17	0.	614	1.642	0.	.614	0.4	17	0
10.32	37.6	0	0.39	99	0.	587	1.569	0.	.587	0.3	99	0
9.84	39.2	0	0.38	30	0.	560	1.496	0	.560	0.3	80	0
9.36	40.8	0	0.36	52	0.	533	1.423	0	.533	0.3	62	0
8.88	42.4	0	0.34	13	0.	505	1.350	0	.505	0.34	43	0
8.40	44.0	0	0.32	25	0.	478	1.277	0	478	0.3	25	0
		ŕ						Í				É
8 40	44 0	0	0 32	25	0	478	1 277	0	478	0.3	25	0
7.92	45.6	Õ	0.30)6	ů. 0.	451	1.204	0	.451	0.3	06	0
7.44	47.2	0	0.28	38	0.	423	1.131	0	423	0.2	88	0
6.96	48.8	0	0.26	59	0.	396	1.058	0	.396	0.2	69	0
6.48	50.4	0	0.25	50	0.	369	0.985	0.	.369	0.2	50	0
6.00	52.0	0	0.23	32	0.	341	0.912	0.	.341	0.2	32	0
5.52	53.6	0	0.21	3	0.	314	0.839	0.	.314	0.2	13	0
5.04	55.2	0	0.19	95	0.	287	0.766	0.	.287	0.1	95	0
4.56	56.8	0	0.17	76	0.	259	0.693	0.	.259	0.1	76	0
4.08	58.4	0	0.15	58	0.	232	0.620	0.	.232	0.1	58	0
3.60	60.0	0	0.13	39	0.	205	0.547	0.	.205	0.1	39	0
								1				
3.60	60.0	0	0.13	39	0.	205	0.547	0.	.205	0.1	39	0
3.42	60.6	0	0.13	32	0.	195	0.520	0.	.195	0.1	32	0
3.24	61.2	0	0.12	25	0.	184	0.493	0.	.184	0.12	25	0
3.06	61.8	0	0.11	8	0.	174	0.465	0.	.174	0.1	18	0
2.88	62.4	0	0.11	1	0.	164	0.438	0.	.164	0.1	11	0
2.70	63.0	0	0.10)4	0.	154	0.410	0.	.154	0.1	04	0
2.52	63.6	0	0.09	97	0.	143	0.383	0.	.143	0.0	97	0
2.34	64.2	0	0.09	90	0.	133	0.356	0.	.133	0.0	90	0
2.16	64.8	0	0.08	33	0.	123	0.328	0.	.123	0.0	83	0
1.98	65.4	0	0.07	77	0.	113	0.301	0.	.113	0.0	77	0
1.80	66.0	0	0.07	70	0.	102	0.274	0.	.102	0.0	70	0
	Ì							1				

(continued) Table of Bending Shear Stresses

1.80 <mark>66.0</mark>	00.070	0.102	0.274	0.102	0.0700
1.62 <mark>66.6</mark>	00.06	30.092	0.246	0.092	0.0630
1.44 <mark>67.2</mark>	00.05	60.082	0.219	0.082	0.0560
1.26 <mark>67.8</mark>	00.049	90.072	0.192	0.072	0.0490
1.08 <mark>68.4</mark>	00.042	20.061	0.164	0.061	0.0420
0.90 <mark>69.0</mark>	00.03	50.051	0.137	0.051	0.0350
0.72 <mark>69.6</mark>	00.028	80.041	0.109	0.041	0.0280
0.54 <mark>70.2</mark>	00.02	10.031	0.082	0.031	0.0210
0.36 <mark>70.8</mark>	00.014	40.020	0.055	0.020	0.0140
0.18 <mark>71.4</mark>	00.00′	70.010	0.027	0.010	0.0070
0.00 <mark>72.0</mark>	00.00	000.00	0.000	0.000	0.0000

(continued) Table of Bending Shear Stresses

Table of Total Normal Stresses

		Comb	oined Nor	mal	Stresses		
	0	1	2	3	2'	1'	0'
Z							
0	12.594	-8.416	-18.347	0.0	18.347	8.416	-12.594
0.6	12.191	-8.206	-17.848	0	17.848	8.206	-12.191
1.2	11.792	-7.998	-17.354	0	17.354	7.998	-11.792
1.8	11.405	-7.792	-16.867	0	16.867	7.792	-11.405
2.4	11.022	-7.588	-16.386	0	16.386	7.588	-11.022
3	10.644	-7.386	-15.909	0	15.909	7.386	-10.644
3.6	10.277	-7.185	-15.440	0	15.440	7.185	-10.277
4.2	9.915	-6.986	-14.975	0	14.975	6.986	-9.915
4.8	9.563	-6.789	-14.519	0	14.519	6.789	-9.563
5.4	9.210	-6.593	-14.064	0	14.064	6.593	-9.210
6	8.868	-6.399	-13.617	0	13.617	6.399	-8.868
	0.000	0.000	0.000	0	0.000	0.000	0.000
6	8.868	-6.399	-13.617	0	13.617	6.399	-8.868
6.6	8.537	-6.207	-13.177	0	13.177	6.207	-8.537
7.2	8.204	-6.017	-12.740	0	12.740	6.017	-8.204
7.8	7.882	-5.829	-12.310	0	12.310	5.829	-7.882
8.4	7.565	-5.642	-11.885	0	11.885	5.642	-7.565
9	7.258	-5.457	-11.468	0	11.468	5.457	-7.258
9.6	6.950	-5.274	-11.052	0	11.052	5.274	-6.950
10.2	6.653	-5.092	-10.645	0	10.645	5.092	-6.653
10.8	6.361	-4.913	-10.242	0	10.242	4.913	-6.361
11.4	6.073	-4.735	-9.844	0	9.844	4.735	-6.073
12	5.790	-4.558	-9.450	0	9.450	4.558	-5.790
	0.000	0.000	0.000	0	0.000	0.000	0.000
12	5.790	-4.558	-9.450	0	9.450	4.558	-5.790
13.6	5.071	-4.097	-8.431	0	8.431	4.097	-5.071

	(contin	iucu) rai		ai i voi ma	I DILESSES)
15.2	4.384	-3.648	-7.445	7.445	3.648	-4.384
16.8	3.729	-3.212	-6.493	6.493	3.212	-3.729
18.4	3.114	-2.788	-5.578(5.578	2.788	-3.114
20	2.530	-2.377	-4.696	4.696	2.377	-2.530
21.6	1.977	-1.978	-3.847(3.847	1.978	-1.977
23.2	1.453	-1.591	-3.0300	3.030	1.591	-1.453
24.8	0.959	-1.217	-2.2460	2.246	1.217	-0.959
26.4	0.491	-0.856	-1.492(1.492	0.856	-0.491
28	0.050	-0.506	-0.7690	0.769	0.506	-0.050
	0.000	0.000	0.000	0.000	0.000	0.000
28	0.050	-0.506	-0.7700	0.770	0.506	-0.050
28.8	-0.156	-0.337	-0.4220	0.422	0.337	0.156
29.6	-0.366	-0.170	-0.0770	0.077	0.170	0.366
31.2	-0.758	0.154	0.5860	-0.586	-0.154	0.758
32.8	-1.127	0.466	1.2190	-1.219	-0.466	1.127
34.4	-1.475	0.765	1.824	-1.824	-0.765	1.475
36	-1.801	1.052	2.401	-2.401	-1.052	1.801
37.6	-2.107	1.326	2.949	-2.949	-1.326	2.107
39.2	-2.394	1.588	3.4710	-3.471	-1.588	2.394
40.8	-2.662	1.837	3.965	-3.965	-1.837	2.662
42.4	-2.913	2.074	4.432	-4.432	-2.074	2.913
44	-3.147	2.299	4.873	-4.873	-2.299	3.147
	0.000	0.000	0.000	0.000	0.000	0.000
44	-3.147	2.299	4.873	-4.873	-2.299	3.147
45.6	-3.363	2.511	5.2870	-5.287	-2.511	3.363
47.2	-3.564	2.710	5.676	-5.676	-2.710	3.564
48.8	-3.751	2.897	6.040	-6.040	-2.897	3.751
50.4	-3.921	3.072	6.3770	-6.377	-3.072	3.921
52	-4.078	3.234	6.690	-6.690	-3.234	4.078
53.6	-4.222	3.383	6.978	-6.978	-3.383	4.222
55.2	-4.352	3.521	7.242	-7.242	-3.521	4.352
56.8	-4.470	3.645	7.4820	-7.482	-3.645	4.470
58.4	-4.568	3.757	7.693	-7.693	-3.757	4.568
60	-4.667	3.857	7.8870	-7.887	-3.857	4.667
	0.000	0.000	0.000	0.000	0.000	0.000
60	-4.667	3.857	7.887(-7.887	-3.857	4.667
60.6	-4.696	3.891	7.951	-7.951	-3.891	4.696
61.2	-4.721	3.924	8.010	-8.010	-3.924	4.721
61.8	-4.754	3.954	8.071	-8.071	-3.954	4.754
62.4	-4.776	3.983	8.124 (-8.124	-3.983	4.776
63	-4.800	4.011	8.176	-8.176	-4.011	4.800
63.6	-4.826	4.036	8.225	-8.225	-4.036	4.826

(continued) Table of Total Normal Stresses

	1		101011101	11	nui biios	503	
64.2	-4.847	4.060	8.2700)	-8.270	-4.060	4.847
64.8	-4.870	4.082	8.3130)	-8.313	-4.082	4.870
65.4	-4.888	4.102	8.3510)	-8.351	-4.102	4.888
66	-4.901	4.120	8.3850)	-8.385	-4.120	4.901
	0.000	0.000	0.0000)	0.000	0.000	0.000
66	-4.901	4.120	8.3850)	-8.385	-4.120	4.901
66.6	-4.916	4.137	8.4160)	-8.416	-4.137	4.916
67.2	-4.927	4.152	8.4430)	-8.443	-4.152	4.927
67.8	-4.939	4.165	8.4690)	-8.469	-4.165	4.939
68.4	-4.954	4.176	8.4920)	-8.492	-4.176	4.954
69	-4.963	4.186	8.5110)	-8.511	-4.186	4.963
69.6	-4.968	4.194	8.5250)	-8.525	-4.194	4.968
70.2	-4.975	4.200	8.5370)	-8.537	-4.200	4.975
70.8	-4.977	4.204	8.5440)	-8.544	-4.204	4.977
71.4	-4.980	4.207	8.5500)	-8.550	-4.207	4.980
72	-4.979	4.208	8.5510)	-8.551	-4.208	4.979

Table of Total Normal Stresses

Table of Combined Shear St. Vt. τ positive

S=	0	1	2	3	2'	1'	0'
Z							
0	0.000	-0.471	0.216	3.987	0.216	-0.471	0.000
0.6	0.136	-0.322	0.357	4.047	0.357	-0.322	0.136
1.2	0.269	-0.177	0.494	4.105	0.494	-0.177	0.269
1.8	0.397	-0.037	0.627	4.160	0.627	-0.037	0.397
2.4	0.521	0.099	0.756	4.212	0.756	0.099	0.521
3	0.642	0.232	0.881	4.261	0.881	0.232	0.642
3.6	0.759	0.360	1.002	4.308	1.002	0.360	0.759
4.2	0.872	0.485	1.119	4.352	1.119	0.485	0.872
4.8	0.981	0.605	1.232	4.394	1.232	0.605	0.981
5.4	1.087	0.722	1.341	4.433	1.341	0.722	1.087
6	1.189	0.834	1.446	4.470	1.446	0.834	1.189
6	1.189	0.834	1.446	4.470	1.446	0.834	1.189
6.6	1.288	0.943	1.549	4.504	1.549	0.943	1.288
7.2	1.383	1.049	1.647	4.536	1.647	1.049	1.383
7.8	1.476	1.150	1.741	4.567	1.741	1.150	1.476
8.4	1.564	1.248	1.833	4.594	1.833	1.248	1.564
9	1.649	1.343	1.920	4.619	1.920	1.343	1.649
9.6	1.732	1.435	2.005	4.643	2.005	1.435	1.732
10.2	1.810	1.522	2.086	4.663	2.086	1.522	1.810
10.8	1.887	1.608	2.164	4.682	2.164	1.608	1.887
11.4	1.959	1.688	2.238	4.698	2.238	1.688	1.959
12	2.029	1.767	2.310	4.713	2.310	1.767	2.029
------	-------	-------	-------	-------	-------	-------	-------
12	2.029	1.767	2.310	4.713	2.310	1.767	2.029
13.6	2.199	1.959	2.485	4.741	2.485	1.959	2.199
15.2	2.351	2.130	2.638	4.757	2.638	2.130	2.351
16.8	2.482	2.281	2.772	4.758	2.772	2.281	2.482
18.4	2.595	2.411	2.885	4.747	2.885	2.411	2.595
20	2.689	2.522	2.980	4.723	2.980	2.522	2.689
21.6	2.767	2.615	3.056	4.687	3.056	2.615	2.767
23.2	2.829	2.691	3.116	4.641	3.116	2.691	2.829
24.8	2.874	2.750	3.159	4.584	3.159	2.750	2.874
26.4	2.905	2.793	3.187	4.516	3.187	2.793	2.905
28	2.922	2.821	3.199	4.439	3.199	2.821	2.922
28	2.922	2.822	3.200	4.439	3.200	2.822	2.922
28.8	2.923	2.829	3.199	4.396	3.199	2.829	2.923
29.6	2.925	2.835	3.198	4.352	3.198	2.835	2.925
31.2	2.915	2.835	3.183	4.257	3.183	2.835	2.915
32.8	2.893	2.823	3.155	4.154	3.155	2.823	2.893
34.4	2.860	2.797	3.115	4.042	3.115	2.797	2.860
36	2.815	2.760	3.063	3.923	3.063	2.760	2.815
37.6	2.759	2.712	3.000	3.796	3.000	2.712	2.759
39.2	2.694	2.653	2.927	3.663	2.927	2.653	2.694
40.8	2.620	2.584	2.844	3.523	2.844	2.584	2.620
42.4	2.537	2.506	2.752	3.378	2.752	2.506	2.537
44	2.445	2.419	2.651	3.227	2.651	2.419	2.445
44	2.445	2.419	2.651	3.226	2.651	2.419	2.445
45.6	2.346	2.324	2.542	3.070	2.542	2.324	2.346
47.2	2.239	2.220	2.425	2.908	2.425	2.220	2.239
48.8	2.125	2.110	2.301	2.741	2.301	2.110	2.125
50.4	2.006	1.993	2.170	2.571	2.170	1.993	2.006
52	1.880	1.870	2.034	2.396	2.034	1.870	1.880
53.6	1.749	1.741	1.892	2.218	1.892	1.741	1.749
55.2	1.613	1.607	1.744	2.036	1.744	1.607	1.613
56.8	1.473	1.468	1.592	1.851	1.592	1.468	1.473
58.4	1.329	1.325	1.436	1.664	1.436	1.325	1.329
60	1.180	1.177	1.275	1.474	1.275	1.177	1.180
60	1.180	1.178	1.275	1.473	1.275	1.178	1.180
60.6	1.124	1.122	1.214	1.402	1.214	1.122	1.124
61.2	1.068	1.065	1.153	1.330	1.153	1.065	1.068

(continued) Table of Combined Shear St. Vt. τ positive

61.8	1 010	1 000	1 001	1 0	1 0 0 1		
01.0	1.010	1.008	1.091	1.257	1.091	1.008	1.010
62.4	0.953	0.951	1.029	1.185	1.029	0.951	0.953
63	0.895	0.894	0.967	1.112	0.967	0.894	0.895
63.6	0.837	0.835	0.903	1.038	0.903	0.835	0.837
64.2	0.778	0.777	0.841	0.965	0.841	0.777	0.778
64.8	0.720	0.719	0.777	0.892	0.777	0.719	0.720
65.4	0.661	0.660	0.713	0.818	0.713	0.660	0.661
66	0.601	0.601	0.649	0.744	0.649	0.601	0.601
66.6	0.542	0.541	0.585	0.670	0.585	0.541	0.542
67.2	0.482	0.482	0.520	0.596	0.520	0.482	0.482
67.8	0.422	0.422	0.456	0.522	0.456	0.422	0.422
68.4	0.362	0.362	0.391	0.448	0.391	0.362	0.362
69	0.302	0.302	0.326	0.373	0.326	0.302	0.302
69.6	0.242	0.242	0.261	0.299	0.261	0.242	0.242
70.2	0.181	0.181	0.196	0.224	0.196	0.181	0.181
70.8	0.121	0.121	0.131	0.149	0.131	0.121	0.121
71.4	0.060	0.060	0.065	0.075	0.065	0.060	0.060
72	0.000	0.000	0.000	0.000	0.000	0.000	0.000

(continued) Table of Combined Shear St. Vt. τ positive

Table of Total Shear Stress with Negative St. Vt.

S=	0	1	2	3	2'	1'	0'
Z							
0	0.000	-0.471	0.216	3.987	0.216	-0.471	0.000
0.6	-0.136	-0.595	0.085	3.851	0.085	-0.595	-0.136
1.2	-0.269	-0.715	-0.043	3.718	-0.043	-0.715	-0.269
1.8	-0.397	-0.830	-0.166	3.588	-0.166	-0.830	-0.397
2.4	-0.521	-0.943	-0.287	3.461	-0.287	-0.943	-0.521
3	-0.642	-1.052	-0.403	3.337	-0.403	-1.052	-0.642
3.6	-0.759	-1.158	-0.516	3.215	-0.516	-1.158	-0.759
4.2	-0.872	-1.259	-0.625	3.096	-0.625	-1.259	-0.872
4.8	-0.981	-1.358	-0.731	2.981	-0.731	-1.358	-0.981
5.4	-1.087	-1.453	-0.833	2.868	-0.833	-1.453	-1.087
6	-1.189	-1.545	-0.932	2.758	-0.932	-1.545	-1.189
6	-1.189	-1.545	-0.932	2.758	-0.932	-1.545	-1.189
6.6	-1.288	-1.633	-1.027	2.650	-1.027	-1.633	-1.288
7.2	-1.383	-1.718	-1.120	2.545	-1.120	-1.718	-1.383
7.8	-1.476	-1.801	-1.210	2.442	-1.210	-1.801	-1.476
8.4	-1.564	-1.879	-1.295	2.342	-1.295	-1.879	-1.564
9	-1.649	-1.956	-1.378	2.244	-1.378	-1.956	-1.649
9.6	-1.732	-2.029	-1.458	2.149	-1.458	-2.029	-1.732
10.2	-1.810	-2.098	-1.535	2.056	-1.535	-2.098	-1.810

L.	contin	1404) 10	1010 01			00 1111	1 voguti v	
Ì	10.8	-1.887	-2.165	-1.609	1.965	-1.609	-2.165	-1.887
	11.4	-1.959	-2.229	-1.679	1.878	-1.679	-2.229	-1.959
	12	-2.029	-2.291	-1.747	1.792	-1.747	-2.291	-2.029
	12	-2.029	-2.290	-1.747	1.791	-1.747	-2.290	-2.029
	13.6	-2.199	-2.440	-1.914	1.574	-1.914	-2.440	-2.199
	15.2	-2.351	-2.571	-2.063	1.372	-2.063	-2.571	-2.351
	16.8	-2.482	-2.684	-2.193	1.184	-2.193	-2.684	-2.482
	18.4	-2.595	-2.779	-2.305	1.010	-2.305	-2.779	-2.595
	20	-2.689	-2.857	-2.399	0.850	-2.399	-2.857	-2.689
	21.6	-2.767	-2.919	-2.478	0.703	-2.478	-2.919	-2.767
	23.2	-2.829	-2.966	-2.541	0.568	-2.541	-2.966	-2.829
	24.8	-2.874	-2.998	-2.589	0.445	-2.589	-2.998	-2.874
	26.4	-2.905	-3.017	-2.623	0.333	-2.623	-3.017	-2.905
	28	-2.922	-3.022	-2.645	0.232	-2.645	-3.022	-2.922
	28	-2.922	-3.021	-2.644	0.232	-2.644	-3.021	-2.922
	28.8	-2.923	-3.018	-2.648	0.186	-2.648	-3.018	-2.923
	29.6	-2.925	-3.014	-2.651	0.141	-2.651	-3.014	-2.925
	31.2	-2.915	-2.994	-2.647	0.060	-2.647	-2.994	-2.915
	32.8	-2.893	-2.964	-2.631	-0.012	-2.631	-2.964	-2.893
	34.4	-2.860	-2.922	-2.604	-0.076	-2.604	-2.922	-2.860
	36	-2.815	-2.869	-2.566	-0.130	-2.566	-2.869	-2.815
	37.6	-2.759	-2.807	-2.519	-0.177	-2.519	-2.807	-2.759
	39.2	-2.694	-2.736	-2.461	-0.217	-2.461	-2.736	-2.694
	40.8	-2.620	-2.656	-2.396	-0.249	-2.396	-2.656	-2.620
	42.4	-2.537	-2.567	-2.322	-0.275	-2.322	-2.567	-2.537
	44	-2.445	-2.471	-2.239	-0.294	-2.239	-2.471	-2.445
	44	-2.445	-2.471	-2.239	-0.295	-2.239	-2.471	-2.445
	45.6	-2.346	-2.368	-2.149	-0.308	-2.149	-2.368	-2.346
	47.2	-2.239	-2.257	-2.053	-0.316	-2.053	-2.257	-2.239
	48.8	-2.125	-2.140	-1.950	-0.319	-1.950	-2.140	-2.125
	50.4	-2.006	-2.018	-1.841	-0.317	-1.841	-2.018	-2.006
	52	-1.880	-1.890	-1.726	-0.311	-1.726	-1.890	-1.880
	53.6	-1.749	-1.757	-1.607	-0.301	-1.607	-1.757	-1.749
	55.2	-1.613	-1.619	-1.482	-0.287	-1.482	-1.619	-1.613
	56.8	-1.473	-1.478	-1.354	-0.270	-1.354	-1.478	-1.473
	58.4	-1.329	-1.332	-1.222	-0.249	-1.222	-1.332	-1.329
	60	-1.180	-1.183	-1.086	-0.226	-1.086	-1.183	-1.180
	60	-1.180	-1.183	-1.085	-0.226	-1.085	-1.183	-1.180
	60.6	-1.124	-1.126	-1.034	-0.217	-1.034	-1.126	-1.124
	61.2	-1.068	-1.070	-0.982	-0.207	-0.982	-1.070	-1.068

(continued) Table of Total Shear Stress with Negative St. Vt.

COLLELI	1404) 10				55 WIth	1 to Sutt t	
61.8	-1.010	-1.012	-0.929	-0.197	-0.929	-1.012	-1.010
62.4	-0.953	-0.954	-0.876	-0.187	-0.876	-0.954	-0.953
63	-0.895	-0.897	-0.824	-0.177	-0.824	-0.897	-0.895
63.6	-0.837	-0.838	-0.770	-0.166	-0.770	-0.838	-0.837
64.2	-0.778	-0.779	-0.716	-0.155	-0.716	-0.779	-0.778
64.8	-0.720	-0.720	-0.662	-0.144	-0.662	-0.720	-0.720
65.4	-0.661	-0.661	-0.608	-0.133	-0.608	-0.661	-0.661
66	-0.601	-0.602	-0.553	-0.121	-0.553	-0.602	-0.601
66	-0.601	-0.602	-0.553	-0.121	-0.553	-0.602	-0.601
66.6	-0.542	-0.542	-0.499	-0.110	-0.499	-0.542	-0.542
67.2	-0.482	-0.482	-0.444	-0.098	-0.444	-0.482	-0.482
67.8	-0.422	-0.423	-0.389	-0.086	-0.389	-0.423	-0.422
68.4	-0.362	-0.362	-0.333	-0.074	-0.333	-0.362	-0.362
69	-0.302	-0.302	-0.278	-0.062	-0.278	-0.302	-0.302
69.6	-0.242	-0.242	-0.222	-0.049	-0.222	-0.242	-0.242
70.2	-0.181	-0.181	-0.167	-0.037	-0.167	-0.181	-0.181
70.8	-0.121	-0.121	-0.111	-0.025	-0.111	-0.121	-0.121
71.4	-0.060	-0.061	-0.056	-0.012	-0.056	-0.061	-0.060
72	0.000	0.000	0.000	0.000	0.000	0.000	0.000

(continued) Table of Total Shear Stress with Negative St. Vt.

APPENDIX G

BOOTHBY'S TORSION PROBLEM

In the EBC of case study four, this material corresponds to the input model, input data, input forms, figures of output data with checks in notepad version, and excel processed output data and charts. Charts are presented containing both partial and combined tresses along interest points of the beam and cross section profile. Again, the asymptotic behavior of the thin-walled beam elastic line is successfully shown in the charts, which evidences the efficiency of the high order finite element used by BMTORSWP. Positive shear and axial stresses are assumed similar to those occurring at the cross section flanges and web when the beam undergoes bending as shown below.

Convention for Shear Contributions

The analog EBC model used in the input form is shown together with the corresponding input notepad and input forms. The input form used for BMTORSWP was edited to be used in BMCOLDG without resorting to input forms for the bending problem. The purpose was to obtain output data for the bending solution in the exact cross section points where the warping analysis provided data. Afterwards, stresses were superposed and combined. Final results are shown in the charts in this appendix.

nodes						24.6k-in EBC analog vert. load				Ana	Analog tensile load GJ = 1022.4 kip						
GJ	1	3	57	9 11 13	15 1	7 19	21	23 2	5 27	29	31	33 35	5 37	39	41 43 45	5 47	49 GJ
4	1	2	34	5 6 🔿	78	9 10	11	12	13	14	15 10	6 17	18 <u></u> 1	9 20	0 21 22	23 24	i
	\vee	6@	20"=120	" \\ L	4@18	3"=72"	V	3@2	1"=63	'	/ 5@	021"=10	5"	/	6@20"=120"		V
	 /		120"	elements	/		1	24	40"	/			$\langle \rangle$	/	120"		\neq

EBC Model for BMTORSWP (Boothby, 1984)

Analysis of flexure for a 3-span beam, Boothy, AISC-EJ, 1984 24 49 4 0 9 0 1 0 29000. 1 1 2 3 162. 1. 20. 3 4 5 162. 1. 20. 3 5 6 7 162. 1. 20. 4 7 8 9 162. 1. 20. 5 9 10 11 162. 1. 20. 6 11 12 13 162. 1. 20. 7 13 14 15 162. 1. 18. 9 17 18 19 162. 1. 18. 10 19 20 21 162. 1. 18. 11 21 22 23 162. 1. 21. 12 23 24 25 162. 1. 21. 13 25 26 27 162. 1. 21. 14 27 28 29 162. 1. 21. 15 29 30 31 162. 1. 21. 16 31 32 33 162. 1. 21. 17 33 34 35 162. 1. 21. 16 31 32 33 162. 1. 21. 17 33 34 35 162. 1. 21. 17 33 34 35 162. 1. 21. 19 37 38 39 162. 1. 20. 21 41 42 43 162. 1. 20. 22 43 44 45 162. 1. 20. 23 45 46 47 162. 1. 20. 24 47 48 49 162. 1. 20. 24 47 48 49 162. 1. 20. 24 47 48 49 162. 1. 20. 24 1 1 1 013 0 1 037 0 1 049 0 1 0 121 10.0 Load			Bf2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Analysis of flexure	for a 3-span	beam, Boothy, AISC-EJ, 1984
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 0 29000. 1. 20. 1. 20. 1. 20. 1. 20. 1. 20. 1. 20. 1. 20. 1. 18. 1. 18. 1. 18. 1. 18. 1. 18. 1. 21.	BMTORSWP note pad edited for BMCOLDGP and spreadsheet post- processing
14 27 28 29 162. 1. 21. 15 29 30 31 162. 1. 21. 16 31 32 33 162. 1. 21. 17 33 34 35 162. 1. 21. 17 33 34 35 162. 1. 21. 18 35 36 37 162. 1. 21. 19 37 38 39 162. 1. 20. 20 39 40 41 162. 1. 20. 21 41 42 43 162. 1. 20. 23 45 46 47 162. 1. 20. 24 47 48 49 162. 1. 20. 24 47 48 49 162. 1. 20. 24 47 48 49 162. 1. 20. 21 10.0 10.037 0 1049	13 25 26 27 162.	1. 21. 1. 21.	→ Cross section inertia
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	14 27 28 29 162. 15 29 30 31 162. 16 31 32 33 162.	1. 21. 1. 21. 1. 21.	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17 33 34 35 162.	1. 21.	───→ An arbitrary value of
20 39 40 41 162. 1. 20. 21 41 42 43 162. 1. 20. 22 43 44 45 162. 1. 20. 23 45 46 47 162. 1. 20. 24 47 48 49 162. 1. 20. 4 1 1 1 013 0 1 037 0 1 049 0 1 0 121 10.0 Load	18 35 36 37 162.	1. 21. 1. 20.	cross section area
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20 39 40 41 162.	1. 20.	
23 45 46 47 162. 1. 20. 24 47 48 49 162. 1. 20. 4 1 1 1 013 0 1 037 0 1 049 0 1 0 121 10.0 \longrightarrow Load	21 41 42 43 162.	1. 20. 1. 20.	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23 45 46 47 162.	1. 20.	
121 10.0 Load	4 1 <u>1 1 0</u> 13 0 1 037	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0
	121 10.0		

Input Notepad of the Bending Problem for BMCOLDGP

Perfect coincidence was found in the bimoment diagrams. However the chart of torques by Boothby contains 2 mistakes. At left side of first interior support and right side of last interior support warping torques of 9.2 and 3.5) respectively were not detected by Boothby with corresponding errors of 700 and 300 per cent. See Chart Total and Warping Torque from BMTORSWP and by Boothby (1984.)

It was found that stresses calculations shown by Boothby correspond to the right side of the first interior support. That is why they are similar to calculations made from BMTORSWP output. Nevertheless, another mistake by Boothby was noticed regarding the sectorial coordinate at the flange-web corner. He used Wn2=6.75 corresponding to a C15x50 shape instead of 5.02. See Chart Total and Warping Torque from BMTORSWP and Boothby.

Input Form for BMTORSWP, Left Side

فسل الم للاستشارات

Input Form for BMTORSWP, Right Side

Match between TWB Bimoment from BMTORSWP and Boothby

Match between Total and Warping Torque from BMTORSWP and Boothby

BBYOUT YOU ARE USING COMPUTER PROGRAM BMTORSW.DEVELOPED BY DR. BERNARDO DESCHAPELLES INPUT DATA FILE NAME IS = bby.txt OUTPUT FILE NAME IS = bbyout.txt STORAGE FILE FOR POST-PROCESSING WITH EXCEL = bbygrf.grf Analysis of restrained warping for a 3-span beam, Boothy, AISC-EJ, 1984 modulus of elasticity of the material= 29000. k/ft2 ELEM nodes inertia length distrib. load AXIAL SOIL NORMAL MODULUS,Ksf angle 2nd END ft.4 ft at i at j LOAD 1st END rad 0.000******* 3***** 0.0 0.0 20.00 0.000 0.000 00 1 0.000******* 5****** 20.00 0.000 0.0 0.000 00 2 3 0.0 0.000******* 7******* 20.00 3 5 0.000 0.0 0.0 0.000 00 . 9******* 20.00 0.000****** 7 0.0 0.000 0.0 0.000 00 0.000****** 5 11****** 20.00 0.000 0.000 00 9 0.0 0.0 0.000******* 13***** 20.00 6 7 11 0.000 0.0 0.0 0.000 00 0.000******* 15****** 18.00 13 0.000 0.0 0.0 0.000 00 0.000******* 17******* 18.00 0.000 8 0.000 00 15 0.0 0.0 0.000******* 9 17 19******* 18.00 0.000 00 0.000 0.0 0.0 0.000******* 21****** 18.00 0.000 10 19 0.0 0.0 0.000 00 0.000******* 23****** 21.00 11 21 0.000 0.0 0.0 0.000 00 0.000******* 23 25 25****** 21.00 0.000 00 12 0.000 0.0 0.0 27****** 21.00 0.000****** 13 0.0 0.000 00 0.000 0.0 29******* 21.00 31***** 21.00 0.000******* 14 27 0.000 0.0 0.0 0.000 00 0.000******* 29 15 0.000 0.0 0.0 0.000 00 0.000****** 33***** 21.00 0.0 16 31 0.000 00 0.000 0.0 0.000******* 17 35****** 21.00 0.000 0.0 0.000 00 33 0.0 37****** 21.00 0.000******* 35 0.000 00 18 0.000 0.0 0.0 0.000******* 39****** 20.00 37 19 0.000 0.0 0.0 0.000 00 0.000****** 41****** 20.00 20 39 0.000 0.0 0.0 0.000 00 0.000******* 43******* 20.00 45****** 20.00 0.000 00 0.000 21 41 0.0 0.0 0.000******* 22 43 0.000 0.0 0.0 0.000 00 23 47****** 20.00 0.000******* 0.0 0.000 00 45 0.000 0.0 49****** 20.00 0.000 0.000******* 0.000 00 24 47 0.0 0.0 INPUT DATA RELATED TO THE 4 SUPPORTS 4 1 1 1 013 0 1 037 0 1 049 0 1 0 INPUT OF NODAL FORCES RELATED TO GLOBAL AXIS 2 121 24.60 FINAL SOLUTION FOUND AFTER 1 ITERATIONS Output of nodal displacements in reference to global axes node displ. node displ. displ. displ. displ. displ. along y along x along y around z along x around z or nonn1 or nonn2 or nonn 3 or nonn1 or nonn2 or nonn 3 1 0.0000E+00 0.0000E+00 -0.1551E-03 2 0.0000E+00 -0.1546E-02 -0.2570E-03 3 0.0000E+00 -0.3082E-02 -0.1521E-03 4 0.0000E+00 -0.4574E-02 -0.2459E-03 Page 1 Output Page 1

				BBYOUT
5 0.0000)E+00	-0.6028E-02	-0.1404E-03	6 0.0000E+00 -0.7351E-02 -0.2125E-03
7 0.0000)E+00	-0.8568E-02	-0.1084E-03	8 0.0000E+00 -0.9437E-02 -0.1240E-03
9 0.0000)E+00	-0.1003E-01	-0.2456E-04	10 0.0000E+00 -0.9713E-02 0.1069E-03
11 0.0000)E+00	-0.8679E-02	0.1940E-03	12 0.0000E+00 -0.5274E-02 0.7084E-03
13 0.0000)E+00	0.0000E+00	0.7633E-03	14 0 0000E+00 0 8776E-02 0 1600E-02
15 0.0000)E+00	0.1904E-01	0.1266E-02	
17 0.0000)E+00	0.4327E-01	0.1374E-02	16 0.0000E+00 0.3099E-01 0.2026E-02
				18 0.0000E+00 0.5529E-01 0.1962E-02
19 0.0000)E+00	0.6671E-01	0.1174E-02	20 0.0000E+00 0.7575E-01 0.1357E-02
21 0.0000)E+00	0.8281E-01	0.5080E-03	22 0.0000E+00 0.8482E-01 0.9450E-04
23 0.0000)E+00	0.8421E-01	-0.2502E-03	24 0.0000E+00 0.8036E-01 -0.7284E-03
25 0.0000)E+00	0.7556E-01	-0.5273E-03	26 0.0000E+00 0.6958E-01 -0.1028E-02
27 0.0000)E+00	0.6326E-01	-0.6274E-03	28 0.0000F+00 0.5652F-01 -0.1134F-02
29 0.0000)E+00	0.4967E-01	-0.6604E-03	30 0 0000E+00 0 4270E-01 -0 1162E-02
31 0.0000)E+00	0.3573E-01	-0.6623E-03	
22.0.0000	00	0 2205- 01	0 02525 02	- 32 0.0000E+00 0.2884E-01 -0.1142E-02
33 0.0000)E+00	0.2205E-01	-0.6552E-05	34 0.0000E+00 0.1560E-01 -0.1052E-02
35 0.0000)E+00	0.9451E-02	-0.5495E-03	36 0.0000E+00 0.4315E-02 -0.7945E-03
37 0.0000)E+00	0.0000E+00	-0.3111E-03	38 0.0000E+00 -0.2150E-02 -0.2888E-03
39 0.0000)E+00	-0.3538E-02	-0.7910E-04	40 0.0000E+00 -0.3960E-02 -0.4359E-04
41 0.0000)E+00	-0.4089E-02	0.1001E-04	42 0.0000E+00 -0.3847E-02 0.5056E-04
43 0.0000)E+00	-0.3493E-02	0.4421E-04	
45 0 0000)F+00	-0 2457=-02	0 5725=-04	44 0.0000E400 -0.2990E-02 0.8002E-04
+5 0.0000		5.27576-02	5. <i>312</i> 3E-04	46 0.0000E+00 -0.1865E-02 0.1002E-03
				Page 2

Output Page 2

BBYOUT 47 0.0000E+00 -0.1256E-02 0.6201E-04 48 0.0000E+00 -0.6302E-03 0.1048E-03 49 0.0000E+00 0.0000E+00 0.6321E-04 OUTPUT OF SOIL REACTIONS, STRESSES AND TRANSVERSE DISPLACEMENTS ____/Fork ELEMENT 1 DISPLACEMENTS IN INCIDENCES 1 2 4 3 -0.15505E-03 0.00000E+00 0.0000E+00 0.00000E+00 -0.15459E-02 1 2 NODE 0.00000E+00 -0.25701E-03 NODE -0.15212E-03 NODE 3 -0.30821E-02 0.00000E+00 FORCES ACTING ALONG THE 9 DOF NODE 1 0.0000E+00 0.16135E+01 0.20670E-12 0.15719E-12 0.28300E-12 2 0.00000E+00 NODE 2 3 NODE 0.00000E+00 -0.16135E+01 0.13802E+01 ELEMENT 1, FROM NODE 1, TO NODE 3 - LENGTH = 20.00 ft left half of span, at tenth points of length span 0.4 span' span span 0.1 0.2 0.3 span span 0.0 0.5 soil,k/ft
 shear,k
 1.61
 1.61
 1.61
 1.61
 1.61
 1.61
 1.61
 1.61
 1.61
 1.61
 1.61
 1.61
 1.61
 1.61
 1.61
 1.61
 1.61
 1.61
 1.61
 1.61
 1.61
 1.61
 1.61
 1.61
 1.61
 1.61
 1.61
 1.61
 1.61
 1.61
 1.61
 1.61
 1.61
 1.61
 1.61
 1.61
 1.61
 1.61
 1.61
 1.61
 1.61
 1.61
 1.61
 1.61
 1.61
 1.61
 1.61
 1.61
 1.61
 1.61
 1.61
 1.61
 1.61
 1.61
 1.61
 1.61
 1.61
 1.61
 1.61
 1.61
 1.61
 1.61
 1.61
 1.61
 1.61
 1.61
 1.61
 1.61
 1.61
 1.61
 1.61
 1.61
 1.61
 1.61
 1.61
 1.61
 1.61
 1.61
 1.61
 1.61
 1.61
 1.61
 1.61
 1.61
 1.61
 1.61
 1.61
 1.61
 1.61
 1.61
 1.61
 axial,k 0.00 AT 1st END and 0.00 AT 2nd END right half of span, at tenth points of length span,at 0.5

 span
 axial, k 0.00 AT 1st END and 0.00 AT 2nd END ELEMENT 2 DISPLACEMENTS IN INCIDENCES 3 4 5 NODE 3 0.00000E+00 -0.30821E-02 NODE 4 0.00000E+00 -0.45744E-02 NODE 3 NODE 4 NODE 5 -0.15212E-03 -0.24585E-03 0.00000E+00 -0.60282E-02 -0.14043E-03 FORCES ACTING ALONG THE 9 DOF 0.00000E+00 0.16135E+01 -0.13802E+01 NODE 3 NODE 4 0.00000E+00 0.43340E-12 0.38510E-11 0.00000E+00 NODE 5 -0.16135E+01 0.41233E+01 ELEMENT 2, FROM NODE 3, TO NODE 5 - LENGTH = 20.00 ft left half of span, at tenth points of length right half of span,at tenth points of length Page 3

Output Page 3

BBYOUT 1.61
 1.61
 1.61
 1.61
 1.61
 1.61
 1.61

 2.46
 2.74
 3.04
 3.37
 3.73

 -0.00458
 -0.00488
 -0.00517
 -0.00546
 -0.00575
 1.61 shear,k 1.61 bmom, kft 4.12 tdisp,ft -0.00603 0.00 AT 1st END and 0.00 AT 2nd END axial,k ELEMENT 3 DISPLACEMENTS IN INCIDENCES 5 6 7 IDENCES -0.60282E-02 0.00000E+00 -0.14043E-03 NODE 5 -0.21250E-03 -0.73507E-02 0.00000E+00 NODE 6 NODE 7 0.00000E+00 -0.85681E-02 -0.10844E-03 FORCES ACTING ALONG THE 9 DOF 0.00000E+00 NODE 5 0.16135E+01 -0.41233E+01 6 0.00000E+00 0.17847E-13 0.63055E-11 NODE NODE 7 0.00000E+00 -0.16135E+01 0.10938E+02 ELEMENT 3, FROM NODE 5, TO NODE 7 - LENGTH = 20.00 ft left half of span, at tenth points of length span 0.3 span[.] span L 0.2 span span span 0.4 0.0 0.1 0.5 0,000 0.000 soil,k/ft 0.000 0.000 0.000 0.000 1.61 shear,k 1.61 1.61 1.61 1.61 1.61 bmom,kft 4.12 4.55 5.03 5.55 6.12 tdisp,ft -0.00603 -0.00631 -0.00658 -0.00685 -0.00712 1.61 6.74 -0.00738 0.00 AT 1st END and 0.00 AT 2nd END axial.k right half of span, at tenth points of length span 0.8 span span 6 0.7 span span span 0.9 0.5 0.6 1.0 soil,k/ft 0.000 0.000 0.000 0.000 0.000 shear,k 1.61 1.61 1.61 1.61 1.61 bmom,kft 6.74 7.43 8.19 9.02 9.93 tdisp,ft -0.00738 -0.00763 -0.00788 -0.00812 -0.00835 0.000 0.000 1.61 10.94 -0.00857 axial,k 0.00 AT 1st END and 0.00 AT 2nd END _____ ELEMENT 4 DISPLACEMENTS IN INCIDENCES 7 8 9 0.00000E+00 -0.85681E-02 NODE 7 -0.10844E-03 8 0.00000E+00 -0.94369E-02 -0.12403E-03 NODE 9 0.00000E+00 -0.10030E-01 -0.24560E-04 NODE FORCES ACTING ALONG THE 9 DOF NODE 7 0.00000E+00 0.16135E+01 -0.10938E+02 -0.58053E-11 -0.55385E-12 8 0.00000E+00 NODE 9 NODE 0.00000E+00 -0.16135E+01 0.28554E+02 ELEMENT 4, FROM NODE 7, TO NODE 9 - LENGTH = 20.00 ft left half of span, at tenth points of length span 0.2 span span span span span 0.3 0.4 0.0 0.1 0.5 0.000 soil,k/ft 0.000 0.000 0.000 0.000 0.000 shear,k 1.61 1.61 1.61 1.61 1.61 1.61 bmom, kft 10.94 12.04 13.26 14.60 16.07 17.68 tdisp,ft -0.00857 -0.00878 -0.00898 -0.00917 -0.00934 -0.00950 0.00 AT 2nd END 0.00 AT 1st END and axial,k right half of span, at tenth points of length span 0.9 span span span 6 0.7 0.8 span span 1.0 0.6 0.5 0.000 0.000 0.000 soil,k/ft 0.000 0.000 0.000 shear, k 1.61 1.61 1.61 1.61 1.61 1.61 17.68 19.46 21.42 23.58 bmom, kft 25.95 28.55 -0.00978 -0.00988 -0.00997 tdisp,ft -0.00950 -0.00965 -0.01003 Page 4

Output Page 4

BBYOUT axial.k 0.00 AT 1st END and 0.00 AT 2nd END 5 DISPLACEMENTS IN INCIDENCES 9 10 11 FI FMFNT 0.00000E+00 -0.10030E-01 9 -0.24560E-04 NODE NODE 10 0.00000E+00 -0.97135E-02 0.10692E-03 NODE 11 0.00000E+00 -0.86789E-02 0.19405E-03 FORCES ACTING ALONG THE 9 DOF NODE 9 NODE 10 0.00000E+00 0.16135E+01 -0.28554E+02 0.00000E+00 0.58212E-12 -0.21937E-11 0.00000E+00 0.74369E+02 NODE 11 -0.16135E+01 ELEMENT 5, FROM NODE 9, TO NODE 11 - LENGTH = 20.00 ft left half of span, at tenth points of length span 0.2 span span span span span 0.3 0.4 0.0 0.1 0.5 0.000 0.000 0.000 0.000 0.000 soil.k/ft 0.000 shear, k 1.61 1.61 1.61 1.61 1.61 1.61 bmom,kft 28.55 31.42 34.58 38.06 41.88 46.09 tdisp,ft -0.01003 -0.01007 -0.01007 -0.01005 -0.00999 -0.00989 axial,k 0.00 AT 1st END and 0.00 AT 2nd END right half of span, at tenth points of length span 0.7 span 0.8 span span span span 0.6 1.0 0.5 0.9 0.000 0.000 0.000 0.000 soil,k/ft 0.000 0.000 1.61 50.72 1.61 1.61 shear.k 1.61 1.61 1.61 shear,k 1.61 1.61 1.61 1.61 1.61 1.61 bmom,kft 46.09 50.72 55.81 61.41 67.58 74.37 tdisp,ft -0.00989 -0.00975 -0.00956 -0.00933 -0.00903 -0.00868 0.00 AT 1st END and 0.00 AT 2nd END axial.k 6 DISPLACEMENTS IN INCIDENCES 11 12 13 11 0.00000E+00 -0.86789E-02 ELEMENT NODE 11 NODE 12 0.19405E-03 0.00000E+00 -0.52740E-02 0.70843E-03 0.00000E+00 0.00000E+00 NODE 13 0.76326E-03 FORCES ACTING ALONG THE 9 DOF 0.00000E+00 -0.74369E+02 NODE 11 0.16135E+01 NODE 12 NODE 13 0.00000E+00 -0.11741E-13 0.28773E-11 0.00000E+00 -0.16135E+01 0.19362E+03 ELEMENT 6, FROM NODE 11, TO NODE 13 - LENGTH = 20.00 ft left half of span, at tenth points of length span span span 1 0.2 0.3 (span span span 0.4 0.1 0.0 0.5 0.000 0.000 0.000 0.000 soil,k/ft 0.000 0.000

 shear,k
 1.61
 1.61
 1.61
 1.61
 1.61

 bmom,kft
 74.37
 81.84
 90.05
 99.10
 109.05

 tdisp,ft
 -0.00868
 -0.00826
 -0.00776
 -0.00718
 -0.00651

 avial k
 0.00 AT 1st END and
 0.00 AT 2nd END

 shear, k 1.61 1.61 1.61 1.61 1.61 120.00 -0.00574 right half of span, at tenth points of length n span span 0.8 0.9 span span span 0.6 0.7 0 span 0.5 1.0 0.000 soil,k/ft 0.000 0.000 1.61 1.61 0.000 0.000 0.000 shear,k 1.61 1.61 1.61 1.61 120.00 bmom,kft 120.00 132.05 145.31 159.90 175.95 tdisp,ft -0.00574 -0.00486 -0.00385 -0.00272 -0.00144 193.62 0.00000 0.00 AT 1st END and 0.00 AT 2nd END axial,k (193.62+1.38)120=1.625~01.61 Page 5

Output Page 5

BBYOUT 5 13 14 15 0.00000E+00 ELEMENT 7 DISPLACEMENTS IN INCIDENCES NODE 13 0.00000E+00 0 NODE 14 0.00000E+00 0 0.76326E-03 NODE 14 0.00000E+00 0.87756E-02 0.15996E-02 0.00000E+00 0.19041E-01 0.12660E-02 NODE 15 FORCES ACTING ALONG THE 9 DOF NODE 13 0.00000E+00 -0.17698E+02 -0.19362E+03 NODE 14 NODE 15 0.00000E+00 0.35749E-12 -0.28040E-11 0.00000E+00 0.17698E+02 0.65896E+02 ELEMENT 7, FROM NODE 13, TO NODE 15 - LENGTH = 18.00 ft left half of span, at tenth points of length span 0.5 span 0.4 span[°] 0.0 span span 0.1 0.2 span 0.3 0.000 0.000 0.000 0.000 0.000 0.000 soil,k/ft -17.70 shear.k -17.70 -17.70 -17.70 -17.70 -17.70 bmom,kft193.62176.23160.15145.25131.44tdisp,ft0.000000.001440.003020.004710.00651axial,k0.00 AT 1st END and0.00 AT 2nd END 118.60 0.00841 right half of span, at tenth points of length span span span span span span 0.5 0.6 0.7 0.8 0.9 1 0.000 0.000 0.000 0.000 0.000 -17.70 -17.70 -17.70 -17.70 span 1.0

 soil,k/ft
 0.000
 0.000
 0.000
 0.000

 shear,k
 -17.70
 -17.70
 -17.70
 -17.70

 bmom,kft
 118.60
 106.63
 95.46
 85.00
 75.17

 tdisp,ft
 0.00841
 0.01039
 0.01246
 0.01459
 0.01679

 0.000 -17.70 65.90 0.01904 axial,k 0.00 AT 1st END and 0.00 AT 2nd END ELEMENT 8 DISPLACEMENTS IN INCIDENCES 15 16 17
 NODE
 15
 0.00000E+00
 0.19041E-01

 NODE
 16
 0.00000E+00
 0.30993E-01

 NODE
 17
 0.00000E+00
 0.43266E-01
 0.12660E-02 0.20264E-02 0.13745E-02 FORCES ACTING ALONG THE 9 DOF
 NODE
 15
 0.0000E+00

 NODE
 16
 0.00000E+00

 NODE
 17
 0.00000E+00
 -0.17698E+02 -0.65896E+02 -0.22204E-12 0.35884E-10 0.17698E+02 -0.98709E+01 ELEMENT 8, FROM NODE 15, TO NODE 17 - LENGTH = 18.00 ft left half of span, at tenth points of length span 0.5 span 0.0 span span span span span 0.1 0.2 0.3 0.4 soil,k/ft 0.000 0.000 0.000 0.000 0.000 0.000 -17.70 57.11 -17.70 48.75 -17.70 -17.70 33.05 -17.70 25.60 shear, k -17.70
 -17.70
 -17.70
 -17.70
 -17.70
 -17.70

 65.90
 57.11
 48.75
 40.75
 33.05

 0.01904
 0.02134
 0.02369
 0.02607
 0.02848
 bmom,kft 0.03091 tdisp,ft 0.00 AT 1st END and 0.00 AT 2nd END axial.k right half of span, at tenth points of length
 span
 <th span 0.9 span 1.0 soil,k/ft 0.000 shear,k -17.70 -17.70 -17.70 -17.70 -17.70 -17.70 bmom,kft 25.60 18.34 11.22 4.17 -2.84 -9.87 tdisp,ft 0.03091 0.03337 0.03583 0.03831 0.04079 0.04327 -17.70 0.00 AT 2nd END 0.00 AT 1st END and axial,k _____ ELEMENT 9 DISPLACEMENTS IN INCIDENCES 17 18 19
 NODE
 17
 0.00000E+00
 0.43266E-01

 NODE
 18
 0.00000E+00
 0.55287E-01
 0.13745E-02 0.19625E-02 Page 6

Output Page 6

BBYOUT NODE 19 0.00000E+00 0.66715E-01 0.11744E-02 FORCES ACTING ALONG THE 9 DOF 0.00000E+00 NODE 17 -0.17698E+02 0.98709E+01 0.0000E+00 -0.19454E-11 0.14981E-10 18 NODE NODE 19 0.00000E+00 0.17698E+02 -0.93421E+02 ELEMENT 9, FROM NODE 17, TO NODE 19 - LENGTH = 18.00 ft span 0.2 left half of span, at tenth points of length span 0.1 span span 0.3 0.4 span span 0.0 0.5 0.000 0.000 0.000 soil,k/ft 0.000 0.000 0.000 shear,k bmom,kft -17.70 -16.98 -17.70 -24.21 -17.70 -17.70 -17.70 -17.70 -31.62 -39.27 -9.87 0.04327 0.04574 0.04819 0.05063 0.05305 tdisp,ft 0.05543 0.00 AT 1st END and 0.00 AT 2nd END axial,k right half of span, at tenth points of length span 0.8 span 0.9 span span span span 0.5 0.6 0.7 span 1.0 0.000 soil,k/ft 0.000 0.000 0.000 0.000 0.000 -17.70 -47.20 -17.70 -55.49 shear,k -17.70 -17.70 -17.70-17.70 bmom, ƙft -64.19 -73.36 -83.08 -93.42 0.05543 0.05779 0.06010 0.06236 0.06457 tdisp,ft 0.06671 0.00 AT 1st END and 0.00 AT 2nd END axial,k _____ ELEMENT 10 DISPLACEMENTS IN INCIDENCES 19 20 21 NODE 19 0.00000E+00 0.66715E-01 0.11744E-02 NODE 0.75752E-01 0.13574E-02 20 0.00000E+00 21 0.0000E+00 0.82814E-01 0.50795E-03 FORCES ACTING ALONG THE 9 DOF NODE 19 NODE 20 0.00000E+00 -0.17698E+02 0.93421E+02 0.00000E+00 -0.95102E-12 -0.30931E-11 NODE 21 0.00000E+00 0.17698E+02 -0.25063E+03 ELEMENT 10, FROM NODE 19, TO NODE 21 - LENGTH = 18.00 ft left half of span, at tenth points of length span 0.3 span 0.2 span span span span 0.0 0.4 0.5 0.1 0.000 0.000 0.000 0.000 0.000 soil,k/ft 0.000 shear,k -17.70 -17.70 -17.70 -17.70 -17.70 -17.70 -128.92 0.07271 bmom, kft -93.42 -104.45 -116.25 -142.55 -157.23 -93.42 -104.45 0.06671 0.06879 0.07079 tdisp,ft axial,k 0.07453 0.07624 0.00 AT 1st END and 0.00 AT 2nd END right half of span, at tenth points of length span 0.8 span 0.9 span span span 0.7 span 0.6 (span 0.5 1.0 0.000 0.000 0.000 0.000 soil,k/ft 0.000 0.000 -17.70 -157.23 -17.70 shear,k -17.70 -17.70 -190.21 -17.70 -208.75 -17.70 -173.08 bmom, kft -250.63-228.840.07624 0.07784 0.07931 0.08064 tdisp,ft 0.08181 0.08281 0.00 AT 1st END and 0.00 AT 2nd END axial,k _____ _____ ELEMENT 11 DISPLACEMENTS IN INCIDENCES 21 22 23 0.00000E+00 0.82814E-01 0.50795E-03 NODE 21 0.00000E+00 0.94498E-04 NODE 22 0.84816E-01 NODE 22 NODE 23 0.00000E+00 0.84208E-01 -0.25021E-03 FORCES ACTING ALONG THE 9 DOF 0.00000E+00 0.25063E+03 0.69021E+01 NODE 21 Page 7 Sum. of moments (17.7x72-193.62-250.63)/10022 = 0.08283 ~ 0.08281 OK 193.62 k-in from elem. 7, node 13

Output Page 7

BBYOUT NODE 22 NODE 23 0.00000E+00 -0.28362E-11 -0.18572E-10 0.00000E+00 -0.69021E+01 -0.91715E+02 ELEMENT 11, FROM NODE 21, TO NODE 23 - LENGTH = 21.00 ft left half of span, at tenth points of length span 0.4 span 0.3 span 0.5 span span span 0.1 0.2 0.0 0.000 0.000 0.000 0.000 soil,k/ft 0.000 0.000 6.90 6.90 6.90 6.90 6.90 shear, k 6.90 -205.00 -185.40 -167.67 bmom, kft -250.63 -226.67 -151.64 0.08376 0.08447 0.08498 0.08531 tdisp,ft 0.08281 0.08546 0.00 AT 2nd END 0.00 AT 1st END and axial,k right half of span, at tenth points of length span 0.7 span 0.6 span span 0.8 0.9 span span span 0.5 1.0 .,000 0.000 0.000 0.000 soil.k/ft 0.000 0.000 6.90 -137.14 shear,k 6.90 6.90 6.90 6.90 6.90 bmom, kft -151.64 -124.02 -112.15 -101.42-91.710.08546 0.08546 0.08532 0.08506 0.08469 tdisp,ft 0.08421 0.00 AT 1st END and 0.00 AT 2nd END axial,k ELEMENT12DISPLACEMENTS IN INCIDENCES232425NODE230.00000E+000.84208E-01 0.84208E-01 -0.25021E-03 NODE 24 0.0000E+00 0.80362E-01 -0.72842E-03 NODE 25 0.00000E+00 0.75563E-01 -0.52733E-03 FORCES ACTING ALONG THE 9 DOF NODE 23 NODE 24 NODE 25 0.00000E+00 0.69021E+01 0.91715E+02 0.00000E+00 0.22534E-11 -0.25101E-10 0.00000E+00 -0.33418E+02 -0.69021E+01 ELEMENT 12, FROM NODE 23, TO NODE 25 - LENGTH = 21.00 ft left half of span, at tenth points of length span 0.3 span 0.1 span 0.2 span span span 0.0 0.4 0.5 0.000 0.000 0.000 0.000 soil,k/ft 0.000 0.000 shear,k 6.90 6.90 6.90 6.90 6.90 6.90 bmom, kft -91.71 -82.93 -74.99 -67.81 -61.31 -55.43 0.08364 0.08298 0.08421 0.08225 0.08146 0.08060 tdisp,ft axial.k 0.00 AT 1st END and 0.00 AT 2nd END right half of span, at tenth points of length span span span 0.6 0.7 span span 0.8 0.9 span 0.5 1.0 0.000 0.000 0.000 6.90 6.90 6.90 0.000 6.90 0.000 6.90 soil,k/ft 0.000 shear,k 6.90 -55.43 bmom.kft -50.10 -45.29 -40.93 -36.99 -33.420.08060 0.07968 0.07872 0.07771 0.07665 0.07556 tdisp,ft axial,k 0.00 AT 1st END and 0.00 AT 2nd END
 ELEMENT
 13
 DISPLACEMENTS IN INCIDENCES
 25
 26
 27

 NODE
 25
 0.00000E+00
 0.75563E-01
 0.00000E+00
 0.75563E-01
 -0.52733E-03 NODE 26 NODE 27 0.00000E+00 0.69583E-01 -0.10283E-02 0.0000E+00 0.63259E-01 -0.62744E-03 FORCES ACTING ALONG THE 9 DOF NODE 25 NODE 26 0.00000E+00 0.69021E+01 0.33418E+02 -0.30136E-11 -0.12480E-10 0.00000E+00 NODE 27 0.00000E+00 -0.69021E+01 -0.11786E+02 Page 8

Output Page 8

BBYOUT ELEMENT 13, FROM NODE 25, TO NODE 27 - LENGTH = 21.00 ft left half of span, at tenth points of length span span span span span span 0.3 0.0 0.1 0.2 0.4 0.5 0.000 0.000 0.000 0.000 0.000 soil,k/ft 0.000 shear,k bmom,kft 6.90 -27.26 6.90 6.90 6.90 6.90 6.90 -33.42-20.02-30.19 -24.61 -22.20 0.07444 0.07328 tdisp,ft 0.07556 0.07210 0.07090 0.06967 axial,k 0.00 AT 1st END and 0.00 AT 2nd END right half of span, at tenth points of length span 0.8 span 0.6 span 0.7 span span span 0.9 0.5 1.0 soil.k/ft 0.000 0.000 0.000 0.000 0.000 0.000 6.90 6.90 shear,k 6.90 6.90 6.90 6.90 bmom, kft -20.02 -18.05 -16.25 -14.62 -13.14 -11.79 tdisp,ft 0.06842 0.06715 0.06967 0.06587 0.06457 0.06326 0.00 AT 1st END and 0.00 AT 2nd END axial,k ELEMENT 14 DISPLACEMENTS IN INCIDENCES 27 28 29 NODE 27 0.00000E+00 0.63259E-01 -0.62744E-03 28 -0.11340E-02 NODE 0.00000E+00 0.56519E-01 NODE 29 0.00000E+00 0.49665E-01 -0.66038E-03 FORCES ACTING ALONG THE 9 DOF NODE 27 NODE 28 0.00000E+00 0.69021E+01 0.11786E+02 0.00000E+00 0.64125E-11 -0.84248E-10 0.00000E+00 NODE 29 -0.69021E+01 -0.30859E+01 ELEMENT 14, FROM NODE 27, TO NODE 29 - LENGTH = 21.00 ft left half of span, at tenth points of length span 0.2 span 0.3 span span span span 0.0 0.4 0.1 0.5 soil,k/ft 0.000 0.000 0.000 0.000 0.000 0.000 shear,k 6.90 6.90 6.90 6.90 6.90 6.90 bmom, kft -11.79 -10.56 -9.43 -8.40 -7.46 -6.59 0.06326 0.06194 0.06060 0.05926 0.05791 0.05655 tdisp,ft 0.00 AT 1st END and 0.00 AT 2nd END axial,k right half of span, at tenth points of length span 0.7 span 0.8 span span span span 0.5 0.6 0.9 1.0 0.000 0.000 0.000 0.000 0.000 0.000 soil,k/ft shear,k bmom,kft 6.90 6.90 6.90 6.90 6.90 6.90 -5.04 -6.59 -5.78 -4 35 -3.70 -3 09 0.05518 0.05381 0.05655 0.05243 0.05105 tdisp,ft 0.04967 axial,k 0.00 AT 1st END and 0.00 AT 2nd END ------ELEMENT 15 DISPLACEMENTS IN INCIDENCES 29 30 31 NODE 29 0.00000E+00 0.49665E-01 -0.66038E-03 NODE 30 0.0000E+00 0.42702E-01 -0.11617E-02 0.00000E+00 NODE 31 0.35733E-01 -0.66228E-03 FORCES ACTING ALONG THE 9 DOF NODE 29 0.00000E+00 0.69021E+01 0.30859E+01 30 0.00000E+00 0.54601E-11 NODE 0.46169E-12 NODE 31 0.00000E+00 -0.69021E+01 0.22290E+01 ELEMENT 15, FROM NODE 29, TO NODE 31 - LENGTH = 21.00 ftleft half of span, at tenth points of length Page 9

Output Page 9

BBYOUT span 50.1 0.1 0.000 span 0.3 span 0.4 span span span 0.2 0.0 0.5 0.000 0.000 0.000 0.000 soil,k/ft 0.000 0.000 6.90 -2.51 6.90 -1.95 shear,k 6.90 6.90 6.90 6.90 -1.41 -3.09 bmom,kft -0.89 -0 38 0.04967 0.04828 0.04689 tdisp,ft 0.04549 0.04410 0.04270 0.00 AT 1st END and 0.00 AT 2nd END axial.k right half of span, at tenth points of length span 0.8 span 0.7 span 0.9 span span 0.6 span 0.5 1.0 0.000 0.000 soil,k/ft 0.000 0.000 0.000 0.000 6.90 6.90 6.90 6.90 6.90 shear.k 6.90 bmom, kft -0.38 0.13 0.64 1.16 1.68 2.23 0.04270 0.04131 0.03991 0.03852 0.03713 tdisp,ft 0.03573 0.00 AT 1st END and 0.00 AT 2nd END axial.k _____ _____ ELEMENT 16 DISPLACEMENTS IN INCIDENCES 31 32 33 NODE 31 0.00000E+00 0.35733E-01 0.00000E+00 0.35733E-01 -0.66228E-03 NODE 32 NODE 33 0.28843E-01 0.00000E+00 -0.11417E-02 0.00000E+00 0.22046E-01 -0.63522E-03 FORCES ACTING ALONG THE 9 DOF 0.69021E+01 -0.14607E-11 NODE 31 0.0000E+00 -0.22290E+01 NODE 32 0.00000E+00 -0.14266E-10 NODE 33 0.00000E+00 -0.69021E+01 0.99895E+01 ELEMENT 16, FROM NODE 31, TO NODE 33 - LENGTH = 21.00 ft left half of span, at tenth points of length span span span 0.2 span span span 0.0 0.1 0.3 0.4 0.5 0.000 0.000 0.000 0.000 0.000 0.000 soil,k/ft 6.90 6.90 6.90 shear,k 6.90 6.90 6.90 bmom.kft 2.23 2.80 4.02 4.69 5.41 0.03573 0.03434 0.03296 0.03019 0.03157 0.02882 tdisp,ft 0.00 AT 1st END and 0.00 AT 2nd END axial,k right half of span,at tenth points of length span 0.8 span 0.7 (span 0.6 (span span span 0.5 0.9 1.0 0.000 0.000 0.000 0.000 soil.k/ft 0.000 0.000 6.90 <u>6</u>.90 <u>6</u>.90 6.90 6.90 shear, k 6.90 bmom, kft 5.41 6.18 7.02 7.93 8.91 9.99 tdisp,ft 0.02882 0.02745 0.02609 0.02473 0.02338 0.02205 0.00 AT 1st END and 0.00 AT 2nd END axial,k ELEMENT 17 DISPLACEMENTS IN INCIDENCES 33 34 35 NODE 33 0.00000E+00 0.22046E-01 -0.63522E-03 0.00000E+00 NODE 34 0.15601E-01 -0.10521E-02 NODE 34 NODE 35 0.94514E-02 0.0000E+00 -0.54951E-03 FORCES ACTING ALONG THE 9 DOF NODE 33 NODE 34 0.0000E+00 0.69021E+01 -0.99895E+01 -0.39885E-13 0.00000E+00 0.82379E-11 NODE 35 0.0000E+00 -0.69021E+01 0.28710E+02 ELEMENT 17, FROM NODE 33, TO NODE 35 - LENGTH = 21.00 ft left half of span, at tenth points of length span 0.5
 span
 <th span 0.4 soil,k/ft 0.000 Page 10

Output Page 10

BBYOUT 6.90 6.90 12.46 13.87 6.90 6.90 shear,k 6.90 6.90 9.99 15.43 bmom,kft 11.1717.14 0.02205 0.02072 0.01940 0.01809 0.01680 0.01553 tdisp,ft 0.00 AT 2nd END axial,k 0.00 AT 1st END and right half of span, at tenth points of length span 0.7 span 0.6 span 0.8 span span span 0.5 0.9 1.0 0.000 0.000 0.000 0.000 soil,k/ft 0.000 0.000 6.90 6.90 6.90 shear, k 6.90 6.90 6.90 23.39 17.14 19.03 21.10 25.92 bmom, kft 28.71 0.01427 0.01303 0.01181 0.01062 tdisp,ft 0.01553 0.00945 0.00 AT 1st END and 0.00 AT 2nd END axial,k ELEMENT 18 DISPLACEMENTS IN INCIDENCES 35 36 37 0.00000E+00 0.94514E-02 NODE 35 -0.54951E-03 <u>-0.79447E-0</u>3 NODE 36 NODE 37 0.00000E+00 0.43154E-02 0.00000E+00 0.00000E+00 -0.31114E-03 FORCES ACTING ALONG THE 9 DOF NODE 35 NODE 36 0.00000E+00 0.69021E+01 -0.28710E+02 0.00000E+00 0.61062E-15 -0.29798E-11 NODE 37 0.00000E+00 -0.69021E+01 0.78929E+02 ELEMENT 18, FROM NODE 35, TO NODE 37 - LENGTH = 21.00 ft left half of span, at tenth points of length span 0.3 span 0.1 span 0.2 span span span 0.4 0.5 0.0 0.000 0.000 soil,k/ft 0.000 0.000 0.000 0.000 6.90 shear,k 6.90 6.90 6.90 6.90 6.90 35.19 28.71 31.79 38.94 47.68 43.09 bmom, kft 0.00831 0.00721 0.00613 tdisp,ft 0.00945 0.00510 0.00411 0.00 AT 1st END and 0.00 AT 2nd END axial.k right half of span, at tenth points of length span 0.8 span 0.5 span 0.6 span 0.7 span span 0.9 1.0 0.000 0.000 0.000 0.000 0.000 soil,k/ft 0.000 6.90 6.90 6.90 6.90 6.90 6.90 shear,k bmom,kft 47.68 52.74 58.34 64.53 71.37 78.93 0.00411 0.00317 0.00228 0.00146 0.00069 tdisp,ft 0.00000 0.00 AT 2nd END 0.00 AT 1st END and axial,k ELEMENT 19 DISPLACEMENTS IN INCIDENCES 37 38 39 0.00000E+00 0.00000E+00 NODE 37 -0.31114E-03 38 0.0000E+00 NODE -0.21499E-02 -0.28879E-03 NODE 39 0.00000E+00 -0.35379E-02 -0.79102E-04 FORCES ACTING ALONG THE 9 DOF NODE 37 NODE 38 0.00000E+00 -0.65774E+00 -0.78929E+02 0.00000E+00 0.82531E-13 0.65675E-12 0.00000E+00 0.30316E+02 NODE 39 0.65774E+00 ELEMENT 19, FROM NODE 37, TO NODE 39 - LENGTH = 20.00 ft left half of span, at tenth points of length span 0.4 span 0.3 span span 0.1 0.2 0. span span 0 0 0.5 0.000 0.000
 0.000
 0.000
 0.000
 0.000

 -0.66
 -0.66
 -0.66
 -0.66

 78.93
 71.73
 65.18
 59.23

 0.00000
 -0.00059
 -0.00111
 -0.00157
 0,000 soil,k/ft 0.000 shear,k -0.66 -0.66 53.83 48.92 bmom,kft -0.00198 -0.00234 tdisp,ft Page 11 48.92/120=0.41 ~ 0.66

Output Page 11

BBYOUT 0.00 AT 1st END and axial.k 0.00 AT 2nd END right half of span, at tenth points of length span 0.6 span 0.7 span span span span 0.5 0.8 0.9 1.0 0.000 0.000 0.000 0.000 0.000 0.000 soil,k/ft -0.66 -0.66 -0.66 shear,k -0.66 -0.66 -0.66 44.45 40.40 bmom, kft 48.92 36.71 33.36 30.32 tdisp,ft -0.00234 -0.00265 -0.00293 -0.00316 -0.00337 -0.003540.00 AT 1st END and 0.00 AT 2nd END axial,k ELEMENT 20 DISPLACEMENTS IN INCIDENCES 39 40 41 NODE 39 0.00000E+00 -0.35379E-02 -0.79102E-04 NODE 40 0.00000E+00 -0.39596E-02 -0.43587E-04 NODE 41 0.00000E+00 -0.40888E-02 0.10012E-04 FORCES ACTING ALONG THE 9 DOF NODE 39 NODE 40 0.00000E+00 -0.65774E+00 -0.30316E+02 0.00000E+00 -0.37181E-12 -0.12364E-11 NODE 41 0.00000E+00 0.65774E+00 0.11640E+02 ELEMENT 20, FROM NODE 39, TO NODE 41 - LENGTH = 20.00 ft left half of span, at tenth points of length 51⁻¹ span 0.2 span span span span span 0.4 0.1 0.3 0.5 0.0 0.000 soil,k/ft 0.000 0.000 0.000 0.000 0.000 shear, k -0.66 -0.66 -0.66 -0.66 -0.66 -0.66 bmom, kft 30.32 27.55 25.03 22.75 18.79 20.67 tdisp,ft -0.00354 -0.00368 -0.00380 -0.00390 -0.00397 -0.00403 0.00 AT 1st END and 0.00 AT 2nd END axial,k right half of span, at tenth points of length span 0.7 span 0.8 span 0.9 span span span 0.5 0.6 1.0 0.000 0.000 0.000 0.000 0.000 0.000 soil,k/ft shear, k -0.66 -0.66 -0.66 -0.66 -0.66 -0.66 14.10 bmom, kft 17.07 18.79 15.51 12.81 11.64 tdisp,ft -0.00403 -0.00407 -0.00410 -0.00411 -0.00410 -0.00409 0.00 AT 2nd END axial,k 0.00 AT 1st END and _____ _____ ELEMENT 21 DISPLACEMENTS IN INCIDENCES 41 42 43 NODE 41 0.10012E-04 0.00000E+00 -0.40888E-02 NODE 42 NODE 43 0.00000E+00 -0.38469E-02 0.50560E-04 0.00000E+00 -0.34927E-02 0.44206E-04 FORCES ACTING ALONG THE 9 DOF NODE 41 NODE 42 0.00000E+00 -0.65774E+00 -0.11640E+02 0.00000E+00 -0.18067E-12 0.41511E-11 0.44588E+01 43 0.00000E+00 0.65774E+00 NODE ELEMENT 21, FROM NODE 41, TO NODE 43 - LENGTH = 20.00 ft left half of span, at tenth points of length span 0.1 span 0.2 span span span span 0.3 0.4 0.5 0.0 soil.k/ft 0.000 0.000 0.000 0.000 0.000 0.000 -0.66 9.61 shear,k -0.66 -0.66 -0.66 -0.66 -0.66 bmom, kft 11.64 10.58 8.73 7.93 7.21 pmom,KTT 11.64 10.58 9.61 8.73 7.93 7.21 tdisp,ft -0.00409 -0.00406 -0.00403 -0.00399 -0.00393 -0.00387 0.00 AT 1st END and 0.00 AT 2nd END axial.k right half of span, at tenth points of length Page 12

Output Page 12

BBYOUT 0.8 0.9 0.000 0.000 -0.66 -0.00 span span span 0.5 0.6 0.7 (span 0.8 span 1.0 soil,k/ft 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 shear,k -0.66 -0.66 -0.66 -0.66 -0.66 -0.66 -0.66 -0.66 -0.66 bmom,kft 7.21 6.55 5.95 5.40 4.91 4.46 tdisp,ft -0.00387 -0.00381 -0.00374 -0.00366 -0.00358 -0.00349 axial,k 0.00 AT 1st END and 0.00 AT 2nd END ELEMENT 22 DISPLACEMENTS IN INCIDENCES 43 44 45 NODE 43 -0.34927E-02 0.00000E+00 0.44206E-04 NODE 44 NODE 45 0.00000E+00 -0.29965E-02 0.86625E-04 -0.24574E-02 0.57247E-04 0.00000E+00 FORCES ACTING ALONG THE 9 DOF NODE 43 NODE 44 0.00000E+00 -0.65774E+00 -0.44588E+01 0.00000E+00 -0.31086E-14 0.35572E-11 NODE 45 0.00000E+00 0.65774E+00 0.16808E+01 ELEMENT 22, FROM NODE 43, TO NODE 45 - LENGTH = 20.00 ft left half of span, at tenth points of length span 0.3 span span 0.2 span span span 0.4 0.0 0.1 0.5 0.000 0.000 0.000 0.000 soil,k/ft 0.000 0.000 -0.66 -0.66 3.68 shear.k -0.66 -0.66 -0.66 -0.66 4.05 bmom,kft 3.34 4.46 3.03 2.75 tdisp,ft -0.00349 -0.00340 -0.00331 -0.00321 -0.00311 -0.00301 0.00 AT 2nd END axial.k 0.00 AT 1st END and right half of span, at tenth points of length span,a 0.5 span span span span 0.6 0.7 0.8 0.9 span 1.0 0.000 0.000 0.000 0.000 soil,k/ft 0.000 0.000 -0.66 shear,k -0.66 -0.66 -0.66 -0.66 -0.66 -0.66 bmom,kft 2.75 2.49 2.26 2.05 1.86 1.68 tdisp,ft -0.00301 -0.00290 -0.00279 -0.00268 -0.00257 -0.00246 0.00 AT 1st END and 0.00 AT 2nd END axial,k _____
 ELEMENT
 23
 DISPLACEMENTS IN INCIDENCES
 45
 46
 47

 NODE
 45
 0.00000E+00
 -0.24574E-02
 -0.18647E-02

 NODE
 46
 0.00000E+00
 -0.18647E-02
 0.57247E-04 0.10022E-03 NODE 47 -0.12564E-02 0.00000E+00 0.62012E-04 FORCES ACTING ALONG THE 9 DOF 0.00000E+00 -0.65774E+00 NODE 45 -0.16808E+01 NODE 46 0.00000E+00 0.49689E-13 -0.59464E-12 0.00000E+00 NODE 47 0.65774E+00 0.56262E+00 ELEMENT 23, FROM NODE 45, TO NODE 47 - LENGTH = 20.00 ft left half of span, at tenth points of length span span 1 0.2 (n span 0.3 span span span 0.0 0.1 0.4 0.5 0.000 soil,k/ft 0.000 0.000 0.000 0.000 0.000 0.000 shear,k -0.66 -0.66 -0.66 -0.66 -0.66 -0.66 bmom,kft 1.68 1.52 1.37 1.24 1.12 1.00 tdisp,ft -0.00246 -0.00234 -0.00223 -0.00211 -0.00199 -0.00187 0.00 AT 1st END and 0.00 AT 2nd END axial,k right half of span, at tenth points of length spansp Page 13

Output Page 13

BBYOUT shear,k -0.66 -0.66 -0.66 -0.66 bmom,kft 1.00 0.90 0.81 0.72 0.64 tdisp,ft -0.00187 -0.00175 -0.00163 -0.00150 -0.00138 axial,k 0.00 AT 1st END and 0.00 AT 2nd END	-0.66 0.56 -0.00126
ELEMENT 24 DISPLACEMENTS IN INCIDENCES 47 48 49 NODE 47 0.00000E+00 -0.12564E-02 NODE 48 0.00000E+00 -0.63016E-03 NODE 49 0.00000E+00 0.00000E+00 FORCES ACTING ALONG THE 9 NODE 47 0.00000E+00 -0.65774E+00 NODE 48 0.00000E+00 0.27485E-13 NODE 49 0.00000E+00 0.65774E+00	0.62012E-04 0.10477E-03 0.63207E-04 -0.56262E+00 0.29610E-12 0.26197E-12
ELEMENT 24, FROM NODE 47, TO NODE 49 - LENGTH = 20.00 ft left half of span, at tenth points of length span span span span span o.0 0.1 0.2 0.3 0.4 soil,k/ft 0.000 0.000 0.000 0.000 shear,k -0.66 -0.66 -0.66 -0.66 bmom,kft 0.56 0.49 0.43 0.37 0.31 tdisp,ft -0.00126 -0.00113 -0.00101 -0.00088 -0.00076 axial,k 0.00 AT 1st END and 0.00 AT 2nd END	span 0.5 -0.66 0.25 -0.00063
right half of span, at tenth points of length span span span span span span span 0.5 0.6 0.7 0.8 0.9 soil,k/ft 0.000 0.000 0.000 0.000 shear,k -0.66 -0.66 -0.66 -0.66 bmom,kft 0.25 0.20 0.15 0.10 0.05 tdisp,ft -0.00063 -0.00051 -0.00038 -0.00025 -0.00013 axial,k 0.00 AT 1st END and 0.00 AT 2nd END	span 1.0 0.000 -0.66 0.00 0.00000

Uniform, Non Uniform and Total Torques from BMTORSWP

Torque Angle from BMTORSWP

Torque Angle 1st Derivative

Torque Angle 2nd Derivative

Torque Angle 3rd Derivative

Bending Shear from BMCOLDGP

Bending Moment from BMCOLGP

Pure Torsion Shear Stresses at s= 0, 1, 2, 3, 2', 1' and 0'

2', 1', 0')

Bending Shear Stresses along the Spans and Profile Points, Legend in Order

Bending Normal Stresses along the Spans and Profile Points, Legend in Order (0, 1, 2, 3, 2', 1', 0')

Warping Normal Stresses along the Spans and Profile Points, Legend in Order (0, 1, 2, 3, 2', 1', 0')

Combined Normal Stress along the Spans and Profile Points, Legend in Order (0, 1, 2, 3, 2', 1', 0')

First Case of Combined Shear Stress along the Spans and Profile Points, Legend in Order (0, 1, 2, 3, 2', 1', 0')

Second Case of Combined Shear Stress along the Spans and Profile Points, Legend in Order (0, 1, 2, 3, 2', 1', 0')

BMTORSWP and Boothby's Calculations for Right Side of First Interior Support

Normal Stresses at Right Side of 2nd Support Processed by Boothby (1984)

The error committed by Boothby for the sectorial coordinate at the flange-web corner is illustrated in the previous page. Regarding shear stresses, no discrepancies were found as shown in the same page.

Torques and Torque Angles and Derivatives and Bimoment										
Z	Tw	Tt	Т	El	θ	θ'	θ"	θ'''	B(z)	
	-ECw6)"' + GJ	$\theta' = T$	1					Bim	
0.0	-0.060	-1.554	-1.614		0.00E+00	-1.551E-04	-6.305E-11	1.365E-08	0.00	
2.0	-0.060	-1.553	-1.613		-3.00E-04	-1.550E-04	2.723E-08	1.367E-08	0.12	
4.0	-0.061	-1.552	-1.613		-6.00E-04	-1.549E-04	5.471E-08	1.384E-08	0.24	
6.0	-0.062	-1.551	-1.613		-9.00E-04	-1.548E-04	8.267E-08	1.414E-08	0.36	
8.0	-0.064	-1.549	-1.613		-1.20E-03	-1.546E-04	1.114E-07	1.459E-08	0.49	
10.0	-0.066	-1.547	-1.614		-1.50E-03	-1.544E-04	1.411E-07	1.517E-08	0.62	
12.0	-0.070	-1.543	-1.613		-1.90E-03	-1.540E-04	1.721E-07	1.590E-08	0.75	
14.0	-0.073	-1.540	-1.614		-2.20E-03	-1.537E-04	2.048E-07	1.677E-08	0.90	
16.0	-0.078	-1.535	-1.613		-2.50E-03	-1.532E-04	2.393E-07	1.777E-08	1.05	
18.0	-0.083	-1.530	-1.613		-2.80E-03	-1.527E-04	2.760E-07	1.892E-08	1.21	
20.0	-0.088	-1.524	-1.613		-3.10E-03	-1.521E-04	3.151E-07	2.021E-08	1.38	
				2						
20.0	-0.090	-1.524	-1.614		-3.10E-03	-1.521E-04	3.149E-07	2.056E-08	1.38	
22.0	-0.096	-1.518	-1.614		-3.40E-03	-1.515E-04	3.573E-07	2.192E-08	1.56	
24.0	-0.103	-1.510	-1.614		-3.70E-03	-1.507E-04	4.028E-07	2.356E-08	1.76	
26.0	-0.112	-1.501	-1.613		-4.00E-03	-1.498E-04	4.518E-07	2.548E-08	1.98	
28.0	-0.121	-1.492	-1.614		-4.30E-03	-1.489E-04	5.049E-07	2.768E-08	2.21	
30.0	-0.132	-1.481	-1.613		-4.60E-03	-1.478E-04	5.626E-07	3.015E-08	2.46	
32.0	-0.144	-1.469	-1.613		-4.90E-03	-1.466E-04	6.257E-07	3.291E-08	2.74	
34.0	-0.157	-1.456	-1.614		-5.20E-03	-1.453E-04	6.945E-07	3.595E-08	3.04	
36.0	-0.172	-1.441	-1.613		-5.50E-03	-1.438E-04	7.697E-07	3.927E-08	3.37	
38.0	-0.188	-1.425	-1.613		-5.70E-03	-1.422E-04	8.517E-07	4.286E-08	3.73	
40.0	-0.205	-1.407	-1.612		-6.00E-03	-1.404E-04	9.413E-07	4.674E-08	4.12	
				3						
40.0	-0.209	-1.407	-1.616		-6.00E-03	-1.404E-04	9.409E-07	4.777E-08	4.12	
42.0	-0.227	-1.388	-1.615		-6.30E-03	-1.385E-04	1.040E-06	5.181E-08	4.55	
44.0	-0.248	-1.366	-1.614		-6.60E-03	-1.363E-04	1.149E-06	5.654E-08	5.03	
46.0	-0.271	-1.342	-1.613		-6.90E-03	-1.339E-04	1.267E-06	6.197E-08	5.55	
48.0	-0.298	-1.315	-1.613		-7.10E-03	-1.312E-04	1.397E-06	6.810E-08	6.12	
50.0	-0.328	-1.286	-1.614		-7.40E-03	-1.283E-04	1.540E-06	7.491E-08	6.74	
52.0	-0.361	-1.253	-1.614		-7.60E-03	-1.250E-04	1.697E-06	8.243E-08	7.43	
54.0	-0.397	-1.218	-1.615		-7.90E-03	-1.215E-04	1.870E-06	9.063E-08	8.19	
56.0	-0.436	-1.178	-1.614		-8.10E-03	-1.175E-04	2.060E-06	9.954E-08	9.02	
58.0	-0.478	-1.135	-1.612		-8.30E-03	-1.132E-04	2.269E-06	1.091E-07	9.93	
60.0	-0.523	-1.086	-1.609		-8.60E-03	-1.084E-04	2.497E-06	1.194E-07	10.94	
				4						
60.0	-0.535	-1.086	-1.622		-8.60E-03	-1.084E-04	2.496E-06	1.222E-07	10.94	
62.0	-0.582	-1.034	-1.616		-8.80E-03	-1.032E-04	2.751E-06	1.329E-07	12.04	
64.0	-0.637	-0.976	-1.613		-9.00E-03	-9.742E-05	3.029E-06	1.454E-07	13.26	
66.0	-0.699	-0.913	-1.612		-9.20E-03	-9.107E-05	3.333E-06	1.597E-07	14.60	
68.0	-0.770	-0.843	-1.612		-9.30E-03	-8.407E-05	3.668E-06	1.758E-07	16.07	

Z	Tw	Tt	Т	Elm	θ	θ'	θ"	θ'''	B(z)
70.0	-0.848	-0.765	-1.614		-9.50E-03	-7.637E-05	4.038E-06	1.937E-07	17.68
72.0	-0.934	-0.681	-1.615		-9.60E-03	-6.790E-05	4.444E-06	2.133E-07	19.46
74.0	-1.028	-0.587	-1.615		-9.80E-03	-5.857E-05	4.892E-06	2.348E-07	21.42
76.0	-1.130	-0.484	-1.614		-9.90E-03	-4.830E-05	5.385E-06	2.581E-07	23.58
78.0	-1.240	-0.371	-1.611		-1.00E-02	-3.700E-05	5.926E-06	2.832E-07	25.95
80.0	-1.357	-0.246	-1.604		-1.00E-02	-2.456E-05	6.519E-06	3.100E-07	28.55
				5					
80.0	-1.389	-0.246	-1.635		-1.00E-02	-2.456E-05	6.516E-06	3.172E-07	28.55
82.0	-1.511	-0.109	-1.620		-1.01E-02	-1.088E-05	7.177E-06	3.451E-07	31.42
84.0	-1.654	0.042	-1.612		-1.01E-02	4.189E-06	7.899E-06	3.777E-07	34.58
86.0	-1.817	0.208	-1.609		-1.00E-02	2.077E-05	8.691E-06	4.150E-07	38.06
88.0	-2.001	0.391	-1.610		-1.00E-02	3.901E-05	9.563E-06	4.570E-07	41.88
90.0	-2.205	0.592	-1.613		-9.90E-03	5.908E-05	1.052E-05	5.036E-07	46.09
92.0	-2.430	0.813	-1.616		-9.80E-03	8.116E-05	1.158E-05	5.549E-07	50.72
94.0	-2.675	1.057	-1.618		-9.60E-03	1.055E-04	1.275E-05	6.109E-07	55.81
96.0	-2.940	1.325	-1.616		-9.30E-03	1.322E-04	1.403E-05	6.715E-07	61.41
98.0	-3.227	1.621	-1.606		-9.00E-03	1.617E-04	1.543E-05	7.369E-07	67.58
100.0	-3.533	1.944	-1.589		-8.70E-03	1.940E-04	1.698E-05	8.068E-07	74.37
				6					
100.0	-3.614	1.944	-1.670		-8.70E-03	1.940E-04	1.697E-05	8.254E-07	74.37
102.0	-3.933	2.302	-1.631		-8.30E-03	2.297E-04	1.869E-05	8.982E-07	81.84
104.0	-4.305	2.695	-1.610		-7.80E-03	2.689E-04	2.057E-05	9.831E-07	90.05
106.0	-4.729	3.128	-1.601		-7.20E-03	3.121E-04	2.263E-05	1.080E-06	99.10
108.0	-5.211	3.604	-1.607		-6.50E-03	3.596E-04	2.490E-05	1.190E-06	109.05
110.0	-5.741	4.127	-1.614		-5.70E-03	4.118E-04	2.740E-05	1.311E-06	120.00
112.0	-6.328	4.704	-1.624		-4.90E-03	4.693E-04	3.015E-05	1.445E-06	132.05
114.0	-6.963	5.338	-1.625		-3.90E-03	5.326E-04	3.318E-05	1.590E-06	145.31
116.0	-7.654	6.036	-1.618		-2.70E-03	6.023E-04	3.652E-05	1.748E-06	159.90
118.0	-8.399	6.804	-1.595		-1.40E-03	6.789E-04	4.018E-05	1.918E-06	175.95
120.0	-9.196	7.650	-1.546		0.00E+00	7.633E-04	4.420E-05	2.100E-06	193.62
				7					
120.0	10.002	7.650	17.652		0.00E+00	7.633E-04	4.421E-05	-2.284E-06	193.62
121.8	9.275	8.411	17.686		1.40E-03	8.392E-04	4.025E-05	-2.118E-06	176.23
123.6	8.596	9.103	17.699		3.00E-03	9.083E-04	3.658E-05	-1.963E-06	160.15
125.4	7.974	9.733	17.707		4.70E-03	9.711E-04	3.317E-05	-1.821E-06	145.25
127.2	7.401	10.303	17.704		6.50E-03	1.028E-03	3.001E-05	-1.690E-06	131.44
129.0	6.879	10.814	17.694		8.40E-03	1.079E-03	2.708E-05	-1.571E-06	118.60
130.8	6.411	11.275	17.686		1.04E-02	1.125E-03	2.435E-05	-1.464E-06	106.63
132.6	5.995	11.696	17.691		1.25E-02	1.167E-03	2.180E-05	-1.369E-06	95.46
134.4	5.627	12.067	17.694		1.46E-02	1.204E-03	1.941E-05	-1.285E-06	85.00
136.2	5.312	12.398	17.709		1.68E-02	1.237E-03	1.717E-05	-1.213E-06	75.17
138.0	5.049	12.688	17.737		1.90E-02	1.266E-03	1.504E-05	-1.153E-06	65.90

(continued) Torques and Torque Angles and Derivatives and Bimoment

Z	Tw	Tt	T	Elm	θ	θ'	θ"	θ'''	B(z)
				8					
138.0	4.996	12.688	17.685		1.90E-02	1.266E-03	1.505E-05	-1.141E-06	65.90
139.8	4.756	12.939	17.695		2.13E-02	1.291E-03	1.304E-05	-1.086E-06	57.11
141.6	4.541	13.159	17.700		2.37E-02	1.313E-03	1.113E-05	-1.037E-06	48.75
143.4	4.357	13.340	17.696		2.61E-02	1.331E-03	9.306E-06	-9.949E-07	40.75
145.2	4.204	13.500	17.704		2.85E-02	1.347E-03	7.548E-06	-9.600E-07	33.05
147.0	4.082	13.620	17.702		3.09E-02	1.359E-03	5.846E-06	-9.321E-07	25.60
148.8	3.990	13.711	17.701		3.34E-02	1.368E-03	4.188E-06	-9.112E-07	18.34
150.6	3.929	13.771	17.700		3.58E-02	1.374E-03	2.561E-06	-8.973E-07	11.22
150.6	3.929	13.771	17.700		3.58E-02	1.374E-03	2.561E-06	-8.973E-07	11.22
152.4	3.899	13.801	17.699		3.83E-02	1.377E-03	9.537E-07	-8.903E-07	4.17
154.2	3.899	13.801	17.699		4.08E-02	1.377E-03	-6.479E-07	-8.903E-07	-2.84
156.0	3.930	13.771	17.700		4.33E-02	1.374E-03	-2.256E-06	-8.974E-07	-9.87
				9					
156.0	3.937	13.771	17.708		4.33E-02	1.374E-03	-2.251E-06	-8.991E-07	-9.87
157.8	3.983	13.721	17.703		4.57E-02	1.369E-03	-3.877E-06	-9.095E-07	-16.98
159.6	4.062	13.630	17.692		4.82E-02	1.360E-03	-5.530E-06	-9.275E-07	-24.21
161.4	4.175	13.520	17.695		5.06E-02	1.349E-03	-7.221E-06	-9.533E-07	-31.62
163.2	4.321	13.370	17.691		5.30E-02	1.334E-03	-8.966E-06	-9.867E-07	-39.27
165.0	4.502	13.200	17.701		5.54E-02	1.317E-03	-1.078E-05	-1.028E-06	-47.20
166.8	4.716	12.989	17.705		5.78E-02	1.296E-03	-1.267E-05	-1.077E-06	-55.49
168.6	4.961	12.738	17.700		6.01E-02	1.271E-03	-1.466E-05	-1.133E-06	-64.19
170.4	5.246	12.458	17.704		6.24E-02	1.243E-03	-1.676E-05	-1.198E-06	-73.36
172.2	5.557	12.137	17.694		6.46E-02	1.211E-03	-1.897E-05	-1.269E-06	-83.08
174.0	5.907	11.766	17.674		6.67E-02	1.174E-03	-2.133E-05	-1.349E-06	-93.42
				10					
174.0	5.982	11.766	17.748		6.67E-02	1.174E-03	-2.132E-05	-1.366E-06	-93.42
175.8	6.350	11.365	17.715		6.88E-02	1.134E-03	-2.386E-05	-1.450E-06	-104.45
177.6	6.787	10.904	17.692		7.08E-02	1.088E-03	-2.655E-05	-1.550E-06	-116.25
179.4	7.282	10.403	17.686		7.27E-02	1.038E-03	-2.944E-05	-1.663E-06	-128.92
181.2	7.843	9.845	17.688		7.45E-02	9.823E-04	-3.255E-05	-1.791E-06	-142.55
183.0	8.469	9.228	17.697		7.62E-02	9.207E-04	-3.590E-05	-1.934E-06	-157.23
184.8	9.156	8.548	17.705		7.78E-02	8.529E-04	-3.952E-05	-2.091E-06	-173.08
186.6	9.910	7.800	17.710		7.93E-02	7.783E-04	-4.344E-05	-2.263E-06	-190.21
188.4	10.724	6.979	17.703		8.06E-02	6.963E-04	-4.768E-05	-2.449E-06	-208.75
190.2	11.604	6.078	17.682		8.18E-02	6.064E-04	-5.226E-05	-2.650E-06	-228.84
192.0	12.546	5.091	17.637		8.28E-02	5.080E-04	-5.721E-05	-2.865E-06	-250.64
				11					
192.0	-11.898	5.091	-6.806		8.28E-02	5.080E-04	-5.721E-05	2.717E-06	-250.64
194.1	-10.821	3.945	-6.876		8.38E-02	3.936E-04	-5.177E-05	2.471E-06	-226.67
196.2	-9.818	2.909	-6.909		8.45E-02	2.902E-04	-4.682E-05	2.242E-06	-205.00
198.3	-8.889	1.970	-6.919		8.50E-02	1.966E-04	-4.234E-05	2.030E-06	-185.40

(continued) Torques and Torque Angles and Derivatives and Bimoment

	(conti	nued) T	orques	and	Forque Ang	gles and Der	rivatives and	l Bimoment	
Z	Tw	Tt	Т	Elm	θ	θ'	θ"	θ'''	B(z)
200.4	-8.035	1.123	-6.913		8.53E-02	1.120E-04	-3.828E-05	1.835E-06	-167.67
202.5	-7.256	0.356	-6.900		8.55E-02	3.556E-05	-3.462E-05	1.657E-06	-151.64
204.6	-6.551	-0.337	-6.888		8.55E-02	-3.361E-05	-3.131E-05	1.496E-06	-137.14
206.7	-5.920	-0.964	-6.884		8.53E-02	-9.617E-05	-2.832E-05	1.352E-06	-124.02
208.8	-5.364	-1.531	-6.896		8.51E-02	-1.528E-04	-2.562E-05	1.225E-06	-112.15
210.9	-4.883	-2.045	-6.927		8.47E-02	-2.040E-04	-2.317E-05	1.115E-06	-101.42
213.0	-4.475	-2.508	-6.983		8.42E-02	-2.502E-04	-2.092E-05	1.022E-06	-91.71
				12					
213.0	-4.359	-2.508	-6.866		8.42E-02	-2.502E-04	-2.094E-05	9.954E-07	-91.71
215.1	-3.965	-2.928	-6.893		8.36E-02	-2.921E-04	-1.894E-05	9.055E-07	-82.93
217.2	-3.599	-3.306	-6.905		8.30E-02	-3.299E-04	-1.713E-05	8.218E-07	-74.99
219.3	-3.259	-3.649	-6.908		8.23E-02	-3.641E-04	-1.549E-05	7.443E-07	-67.81
221.4	-2.947	-3.959	-6.906		8.15E-02	-3.950E-04	-1.400E-05	6.730E-07	-61.31
223.5	-2.662	-4.239	-6.902		8.06E-02	-4.230E-04	-1.265E-05	6.080E-07	-55.43
225.6	-2.405	-4.493	-6.898		7.97E-02	-4.483E-04	-1.144E-05	5.491E-07	-50.10
227.7	-2.174	-4.722	-6.896		7.87E-02	-4.711E-04	-1.034E-05	4.965E-07	-45.29
229.8	-1.971	-4.929	-6.900		7.77E-02	-4.918E-04	-9.350E-06	4.502E-07	-40.93
231.9	-1.795	-5.116	-6.912		7.67E-02	-5.105E-04	-8.448E-06	4.100E-07	-36.99
234.0	-1.647	-5.285	-6.932		7.56E-02	-5.273E-04	-7.624E-06	3.761E-07	-33.42
				13					
234.0	-1.604	-5.285	-6.889		7.56E-02	-5.273E-04	-7.629E-06	3.663E-07	-33.42
236.1	-1.461	-5.438	-6.899		7.44E-02	-5.426E-04	-6.894E-06	3.336E-07	-30.19
238.2	-1.327	-5.575	-6.903		7.33E-02	-5.563E-04	-6.226E-06	3.031E-07	-27.26
240.3	-1.204	-5.701	-6.905		7.21E-02	-5.688E-04	-5.619E-06	2.750E-07	-24.61
242.4	-1.091	-5.813	-6.904		7.09E-02	-5.800E-04	-5.069E-06	2.491E-07	-22.20
244.5	-0.988	-5.914	-6.902		6.97E-02	-5.901E-04	-4.571E-06	2.256E-07	-20.02
246.6	-0.895	-6.005	-6.900		6.84E-02	-5.992E-04	-4.120E-06	2.044E-07	-18.05
248.7	-0.812	-6.088	-6.900		6.72E-02	-6.074E-04	-3.711E-06	1.855E-07	-16.25
250.8	-0.740	-6.162	-6.901		6.59E-02	-6.148E-04	-3.340E-06	1.689E-07	-14.62
252.9	-0.677	-6.229	-6.906		6.46E-02	-6.215E-04	-3.001E-06	1.546E-07	-13.14
255.0	-0.624	-6.288	-6.912		6.33E-02	-6.274E-04	-2.689E-06	1.426E-07	-11.79
				14					
255.0	-0.610	-6.288	-6.898		6.33E-02	-6.274E-04	-2.691E-06	1.392E-07	-11.79
257.1	-0.559	-6.342	-6.901		6.19E-02	-6.328E-04	-2.411E-06	1.276E-07	-10.56
259.2	-0.512	-6.390	-6.903		6.06E-02	-6.376E-04	-2.154E-06	1.170E-07	-9.43
261.3	-0.470	-6.433	-6.903		5.93E-02	-6.419E-04	-1.919E-06	1.073E-07	-8.40
263.4	-0.432	-6.471	-6.903		5.79E-02	-6.457E-04	-1.703E-06	9.856E-08	-7.46
265.5	-0.397	-6.505	-6.902		5.65E-02	-6.490E-04	-1.504E-06	9.074E-08	-6.59
267.6	-0.367	-6.535	-6.902		5.52E-02	-6.520E-04	-1.321E-06	8.384E-08	-5.78
269.7	-0.341	-6.561	-6.902		5.38E-02	-6.546E-04	-1.151E-06	7.787E-08	-5.04
271.8	-0.319	-6.583	-6.902		5.24E-02	-6.568E-04	-9.931E-07	7.283E-08	-4.35

Z	Tw	Tt	T	Elm	θ	θ'	θ"	θ'''	B(z)
273.9	-0.301	-6.603	-6.904		5.11E-02	-6.588E-04	-8.446E-07	6.872E-08	-3.70
276.0	-0.287	-6.619	-6.906		4.97E-02	-6.604E-04	-7.038E-07	6.554E-08	-3.09
				15					
276.0	-0.283	-6.619	-6.902		4.97E-02	-6.604E-04	-7.046E-07	6.464E-08	-3.09
278.1	-0.270	-6.632	-6.902		4.83E-02	-6.617E-04	-5.721E-07	6.166E-08	-2.51
280.2	-0.259	-6.643	-6.902		4.69E-02	-6.628E-04	-4.452E-07	5.925E-08	-1.95
282.3	-0.251	-6.651	-6.902		4.55E-02	-6.636E-04	-3.228E-07	5.741E-08	-1.41
284.4	-0.246	-6.656	-6.902		4.41E-02	-6.641E-04	-2.037E-07	5.614E-08	-0.89
286.5	-0.243	-6.659	-6.902		4.27E-02	-6.644E-04	-8.665E-08	5.543E-08	-0.38
288.6	-0.242	-6.660	-6.902		4.13E-02	-6.645E-04	2.950E-08	5.529E-08	0.13
290.7	-0.244	-6.658	-6.902		3.99E-02	-6.643E-04	1.460E-07	5.571E-08	0.64
292.8	-0.248	-6.654	-6.902		3.85E-02	-6.639E-04	2.639E-07	5.671E-08	1.16
294.9	-0.255	-6.647	-6.902		3.71E-02	-6.632E-04	3.845E-07	5.827E-08	1.68
297.0	-0.264	-6.638	-6.902		3.57E-02	-6.623E-04	5.090E-07	6.040E-08	2.23
				16					
297.0	-0.267	-6.638	-6.905		3.57E-02	-6.623E-04	5.083E-07	6.105E-08	2.23
299.1	-0.277	-6.626	-6.903		3.43E-02	-6.611E-04	6.388E-07	6.337E-08	2.80
301.2	-0.291	-6.611	-6.902		3.30E-02	-6.596E-04	7.751E-07	6.652E-08	3.39
303.3	-0.309	-6.593	-6.901		3.16E-02	-6.578E-04	9.188E-07	7.049E-08	4.02
305.4	-0.330	-6.572	-6.901		3.02E-02	-6.557E-04	1.072E-06	7.530E-08	4.69
307.5	-0.354	-6.548	-6.902		2.88E-02	-6.533E-04	1.236E-06	8.093E-08	5.41
309.6	-0.383	-6.520	-6.902		2.75E-02	-6.505E-04	1.412E-06	8.739E-08	6.18
311.7	-0.415	-6.489	-6.903		2.61E-02	-6.474E-04	1.603E-06	9.469E-08	7.02
313.8	-0.450	-6.452	-6.903		2.47E-02	-6.438E-04	1.810E-06	1.028E-07	7.93
315.9	-0.490	-6.411	-6.901		2.34E-02	-6.397E-04	2.036E-06	1.118E-07	8.91
318.0	-0.532	-6.366	-6.898		2.20E-02	-6.352E-04	2.280E-06	1.215E-07	9.99
				17					
318.0	-0.545	-6.366	-6.911		2.20E-02	-6.352E-04	2.279E-06	1.244E-07	9.99
320.1	-0.589	-6.315	-6.905		2.07E-02	-6.301E-04	2.551E-06	1.346E-07	11.17
322.2	-0.643	-6.259	-6.902		1.94E-02	-6.245E-04	2.846E-06	1.468E-07	12.46
324.3	-0.705	-6.196	-6.900		1.81E-02	-6.182E-04	3.168E-06	1.609E-07	13.87
326.4	-0.776	-6.126	-6.901		1.68E-02	-6.112E-04	3.523E-06	1.771E-07	15.43
328.5	-0.855	-6.048	-6.902		1.55E-02	-6.034E-04	3.913E-06	1.952E-07	17.14
330.6	-0.943	-5.960	-6.904		1.43E-02	-5.947E-04	4.344E-06	2.154E-07	19.03
332.7	-1.040	-5.864	-6.904		1.30E-02	-5.851E-04	4.820E-06	2.375E-07	21.10
334.8	-1.146	-5.757	-6.903		1.18E-02	-5.744E-04	5.343E-06	2.617E-07	23.39
336.9	-1.260	-5.639	-6.899		1.06E-02	-5.626E-04	5.920E-06	2.878E-07	25.92
339.0	-1.384	-5.507	-6.891		9.50E-03	-5.495E-04	6.554E-06	3.160E-07	28.71
				18					
339.0	-1.421	-5.507	-6.928		9.50E-03	-5.495E-04	6.550E-06	3.244E-07	28.71
341.1	-1.548	-5.362	-6.910		8.30E-03	-5.350E-04	7.261E-06	3.535E-07	31.79
343.2	-1.699	-5.202	-6.901		7.20E-03	-5.190E-04	8.038E-06	3.880E-07	35.19

continued) Torques and Torque Angles and Derivatives and Bimoment

Z	Tw	Tt	T	Elm	θ	θ'	θ"	θ'''	B(z)
345.3	-1.874	-5.023	-6.897		6.10E-03	-5.012E-04	8.894E-06	4.279E-07	38.94
347.4	-2.072	-4.827	-6.898		5.10E-03	-4.816E-04	9.839E-06	4.731E-07	43.09
349.5	-2.293	-4.608	-6.902		4.10E-03	-4.598E-04	1.089E-05	5.237E-07	47.68
351.6	-2.539	-4.368	-6.906		3.20E-03	-4.358E-04	1.204E-05	5.797E-07	52.74
353.7	-2.807	-4.100	-6.907		2.30E-03	-4.091E-04	1.332E-05	6.410E-07	58.34
355.8	-3.099	-3.806	-6.905		1.50E-03	-3.797E-04	1.474E-05	7.077E-07	64.53
357.9	-3.414	-3.479	-6.893		7.00E-04	-3.471E-04	1.630E-05	7.797E-07	71.37
360.0	-3.753	-3.118	-6.871		0.00E+00	-3.111E-04	1.802E-05	8.571E-07	78.93
				19					
360.0	3.749	-3.118	0.631		0.00E+00	-3.111E-04	1.802E-05	-8.562E-07	78.93
362.0	3.424	-2.774	0.650		-6.00E-04	-2.768E-04	1.638E-05	-7.819E-07	71.73
364.0	3.120	-2.460	0.660		-1.10E-03	-2.455E-04	1.489E-05	-7.126E-07	65.18
366.0	2.838	-2.176	0.663		-1.60E-03	-2.171E-04	1.353E-05	-6.482E-07	59.23
368.0	2.578	-1.917	0.661		-2.00E-03	-1.913E-04	1.229E-05	-5.888E-07	53.83
370.0	2.340	-1.683	0.657		-2.30E-03	-1.679E-04	1.117E-05	-5.344E-07	48.92
372.0	2.123	-1.469	0.654		-2.70E-03	-1.466E-04	1.015E-05	-4.849E-07	44.45
374.0	1.929	-1.275	0.654		-2.90E-03	-1.272E-04	9.226E-06	-4.404E-07	40.40
376.0	1.755	-1.098	0.657		-3.20E-03	-1.096E-04	8.385E-06	-4.008E-07	36.71
378.0	1.603	-0.938	0.665		-3.40E-03	-9.363E-05	7.619E-06	-3.661E-07	33.36
380.0	1.474	-0.793	0.681		-3.50E-03	-7.910E-05	6.918E-06	-3.365E-07	30.32
				20					
380.0	1.440	-0.793	0.647		-3.50E-03	-7.910E-05	6.921E-06	-3.289E-07	30.32
382.0	1.315	-0.660	0.655		-3.70E-03	-6.590E-05	6.292E-06	-3.004E-07	27.55
384.0	1.199	-0.540	0.658		-3.80E-03	-5.390E-05	5.718E-06	-2.737E-07	25.03
386.0	1.090	-0.431	0.660		-3.90E-03	-4.299E-05	5.195E-06	-2.490E-07	22.75
388.0	0.991	-0.332	0.659		-4.00E-03	-3.308E-05	4.721E-06	-2.262E-07	20.67
390.0	0.899	-0.241	0.658		-4.00E-03	-2.408E-05	4.289E-06	-2.053E-07	18.79
392.0	0.816	-0.159	0.656		-4.10E-03	-1.590E-05	3.898E-06	-1.863E-07	17.07
394.0	0.741	-0.085	0.656		-4.10E-03	-8.466E-06	3.543E-06	-1.692E-07	15.51
396.0	0.674	-0.017	0.657		-4.10E-03	-1.708E-06	3.220E-06	-1.540E-07	14.10
398.0	0.616	0.044	0.661		-4.10E-03	4.434E-06	2.926E-06	-1.407E-07	12.81
400.0	0.566	0.100	0.667		-4.10E-03	1.001E-05	2.656E-06	-1.293E-07	11.64
				21					
400.0	0.554	0.100	0.654		-4.10E-03	1.001E-05	2.657E-06	-1.264E-07	11.64
402.0	0.505	0.151	0.656		-4.10E-03	1.508E-05	2.416E-06	-1.154E-07	10.58
404.0	0.461	0.197	0.658		-4.00E-03	1.969E-05	2.195E-06	-1.052E-07	9.61
406.0	0.419	0.239	0.658		-4.00E-03	2.387E-05	1.994E-06	-9.572E-08	8.73
408.0	0.381	0.277	0.658		-3.90E-03	2.768E-05	1.812E-06	-8.697E-08	7.93
410.0	0.346	0.312	0.658		-3.90E-03	3.113E-05	1.646E-06	-7.894E-08	7.21
412.0	0.314	0.343	0.657		-3.80E-03	3.427E-05	1.495E-06	-7.165E-08	6.55
414.0	0.285	0.372	0.657		-3.70E-03	3.712E-05	1.359E-06	-6.509E-08	5.95
416.0	0.259	0.398	0.657		-3.70E-03	3.971E-05	1.235E-06	-5.926E-08	5.40

(continued) Torques and Torque Angles and Derivatives and Bimoment

	(,	1		1 4				
Z	Tw	Tt	Т	Elm	θ	θ'	θ"	θ'''	B(z)
418.0	0.237	0.422	0.659		-3.60E-03	4.207E-05	1.121E-06	-5.416E-08	4.91
420.0	0.218	0.443	0.661		-3.50E-03	4.421E-05	1.017E-06	-4.980E-08	4.46
				22					
420.0	0.213	0.443	0.656		-3.50E-03	4.421E-05	1.018E-06	-4.868E-08	4.46
422.0	0.195	0.463	0.657		-3.40E-03	4.615E-05	9.248E-07	-4.449E-08	4.05
424.0	0.178	0.480	0.658		-3.30E-03	4.791E-05	8.398E-07	-4.058E-08	3.68
426.0	0.162	0.496	0.658		-3.20E-03	4.951E-05	7.623E-07	-3.695E-08	3.34
428.0	0.147	0.511	0.658		-3.10E-03	5.096E-05	6.918E-07	-3.360E-08	3.03
430.0	0.134	0.524	0.658		-3.00E-03	5.228E-05	6.277E-07	-3.054E-08	2.75
432.0	0.122	0.536	0.658		-2.90E-03	5.348E-05	5.694E-07	-2.776E-08	2.49
434.0	0.111	0.547	0.657		-2.80E-03	5.456E-05	5.165E-07	-2.526E-08	2.26
436.0	0.101	0.557	0.658		-2.70E-03	5.555E-05	4.682E-07	-2.305E-08	2.05
438.0	0.092	0.566	0.658		-2.60E-03	5.644E-05	4.241E-07	-2.112E-08	1.86
440.0	0.085	0.574	0.659		-2.50E-03	5.725E-05	3.835E-07	-1.947E-08	1.68
				23					
440.0	0.083	0.574	0.657		-2.50E-03	5.725E-05	3.837E-07	-1.905E-08	1.68
442.0	0.077	0.581	0.658		-2.30E-03	5.798E-05	3.472E-07	-1.747E-08	1.52
444.0	0.070	0.588	0.658		-2.20E-03	5.864E-05	3.137E-07	-1.601E-08	1.37
446.0	0.064	0.594	0.658		-2.10E-03	5.923E-05	2.831E-07	-1.465E-08	1.24
448.0	0.059	0.599	0.658		-2.00E-03	5.977E-05	2.550E-07	-1.342E-08	1.12
450.0	0.054	0.604	0.658		-1.90E-03	6.026E-05	2.294E-07	-1.229E-08	1.00
452.0	0.049	0.608	0.658		-1.70E-03	6.069E-05	2.058E-07	-1.128E-08	0.90
454.0	0.045	0.612	0.658		-1.60E-03	6.108E-05	1.842E-07	-1.039E-08	0.81
456.0	0.042	0.616	0.658		-1.50E-03	6.143E-05	1.642E-07	-9.603E-09	0.72
458.0	0.039	0.619	0.658		-1.40E-03	6.174E-05	1.457E-07	-8.935E-09	0.64
460.0	0.037	0.621	0.658		-1.30E-03	6.201E-05	1.284E-07	-8.380E-09	0.56
				24					
460.0	0.036	0.621	0.658		-1.30E-03	6.201E-05	1.284E-07	-8.240E-09	0.56
462.0	0.034	0.624	0.658		-1.10E-03	6.225E-05	1.125E-07	-7.714E-09	0.49
464.0	0.032	0.626	0.658		-1.00E-03	6.246E-05	9.755E-08	-7.246E-09	0.43
466.0	0.030	0.628	0.658		-9.00E-04	6.264E-05	8.348E-08	-6.835E-09	0.37
468.0	0.028	0.629	0.658		-8.00E-04	6.280E-05	7.018E-08	-6.481E-09	0.31
470.0	0.027	0.631	0.658		-6.00E-04	6.292E-05	5.752E-08	-6.185E-09	0.25
472.0	0.026	0.632	0.658		-5.00E-04	6.303E-05	4.540E-08	-5.946E-09	0.20
474.0	0.025	0.633	0.658		-4.00E-04	6.311E-05	3.370E-08	-5.764E-09	0.15
476.0	0.025	0.633	0.658		-3.00E-04	6.316E-05	2.230E-08	-5.640E-09	0.10
478.0	0.024	0.633	0.658		-1.00E-04	6.320E-05	1.110E-08	-5.573E-09	0.05
480.0	0.024	0.634	0.658		0.00E+00	6.321E-05	-2.570E-11	-5.563E-09	0.00

(continued) Torques and Torque Angles and Derivatives and Bimoment

Second Derivative of Torque Angle

P	ure To	rsion S	Shear S	Stresse	s G*t*	'θ'	Warpi	ing	g shear	stress	s at "s"	', - E*S	Sw*0'''	'/ t
	"t" a	t XS s	= 1, 2,	3, 2',	1', 0'		axis			``s	" and	Sw		
0	1	2	3	2'	1'	0'	Z	0	1	2	3	2'	1'	0'
0.501	0.501	0.501	0.510	0.501	0.501	0.501	axial	0	6.01	4.91	-2.45	4.91	6.01	0
-0.90	-0.90	-0.90	-0.92	-0.90	-0.90	-0.90	0.0	0	0.00	0.00	0.00	0.00	0.00	0
-0.90	-0.90	-0.90	-0.92	-0.90	-0.90	-0.90	2.0	0	0.00	0.00	0.00	0.00	0.00	0
-0.90	-0.90	-0.90	-0.92	-0.90	-0.90	-0.90	4.0	0	0.00	0.00	0.00	0.00	0.00	0
-0.90	-0.90	-0.90	-0.92	-0.90	-0.90	-0.90	6.0	0	0.00	0.00	0.00	0.00	0.00	0
-0.90	-0.90	-0.90	-0.91	-0.90	-0.90	-0.90	8.0	0	-0.01	0.00	0.00	0.00	-0.01	0
-0.90	-0.90	-0.90	-0.91	-0.90	-0.90	-0.90	10.0	0	-0.01	0.00	0.00	0.00	-0.01	0
-0.89	-0.89	-0.89	-0.91	-0.89	-0.89	-0.89	12.0	0	-0.01	0.00	0.00	0.00	-0.01	0
-0.89	-0.89	-0.89	-0.91	-0.89	-0.89	-0.89	14.0	0	-0.01	0.00	0.00	0.00	-0.01	0
-0.89	-0.89	-0.89	-0.91	-0.89	-0.89	-0.89	16.0	0	-0.01	-0.01	0.00	-0.01	-0.01	0
-0.89	-0.89	-0.89	-0.90	-0.89	-0.89	-0.89	18.0	0	-0.01	-0.01	0.00	-0.01	-0.01	0
-0.88	-0.88	-0.88	-0.90	-0.88	-0.88	-0.88	20.0	0	-0.01	-0.01	0.00	-0.01	-0.01	0
0.00	0.00	0.00	0.00	0.00	0.00	0.00		0	0.00	0.00	0.00	0.00	0.00	0
-0.88	-0.88	-0.88	-0.90	-0.88	-0.88	-0.88	20.0	0	-0.01	-0.01	0.00	-0.01	-0.01	0
-0.88	-0.88	-0.88	-0.90	-0.88	-0.88	-0.88	22.0	0	-0.01	-0.01	0.00	-0.01	-0.01	0
-0.88	-0.88	-0.88	-0.89	-0.88	-0.88	-0.88	24.0	0	-0.01	-0.01	0.00	-0.01	-0.01	0
-0.87	-0.87	-0.87	-0.89	-0.87	-0.87	-0.87	26.0	0	-0.01	-0.01	0.00	-0.01	-0.01	0
-0.87	-0.87	-0.87	-0.88	-0.87	-0.87	-0.87	28.0	0	-0.01	-0.01	0.00	-0.01	-0.01	0
-0.86	-0.86	-0.86	-0.87	-0.86	-0.86	-0.86	30.0	0	-0.01	-0.01	0.00	-0.01	-0.01	0
-0.85	-0.85	-0.85	-0.87	-0.85	-0.85	-0.85	32.0	0	-0.01	-0.01	0.00	-0.01	-0.01	0
-0.84	-0.84	-0.84	-0.86	-0.84	-0.84	-0.84	34.0	0	-0.01	-0.01	0.01	-0.01	-0.01	0
-0.84	-0.84	-0.84	-0.85	-0.84	-0.84	-0.84	36.0	0	-0.01	-0.01	0.01	-0.01	-0.01	0
-0.83	-0.83	-0.83	-0.84	-0.83	-0.83	-0.83	38.0	0	-0.01	-0.01	0.01	-0.01	-0.01	0
-0.82	-0.82	-0.82	-0.83	-0.82	-0.82	-0.82	40.0	0	-0.02	-0.01	0.01	-0.01	-0.02	0
0.00	0.00	0.00	0.00	0.00	0.00	0.00		0	0.00	0.00	0.00	0.00	0.00	0
-0.82	-0.82	-0.82	-0.83	-0.82	-0.82	-0.82	40.0	0	-0.02	-0.01	0.01	-0.01	-0.02	0
-0.80	-0.80	-0.80	-0.82	-0.80	-0.80	-0.80	42.0	0	-0.02	-0.01	0.01	-0.01	-0.02	0
-0.79	-0.79	-0.79	-0.81	-0.79	-0.79	-0.79	44.0	0	-0.02	-0.02	0.01	-0.02	-0.02	0
-0.78	-0.78	-0.78	-0.79	-0.78	-0.78	-0.78	46.0	0	-0.02	-0.02	0.01	-0.02	-0.02	0
-0.76	-0.76	-0.76	-0.78	-0.76	-0.76	-0.76	48.0	0	-0.02	-0.02	0.01	-0.02	-0.02	0
-0.75	-0.75	-0.75	-0.76	-0.75	-0.75	-0.75	50.0	0	-0.03	-0.02	0.01	-0.02	-0.03	0
-0.73	-0.73	-0.73	-0.74	-0.73	-0.73	-0.73	52.0	0	-0.03	-0.02	0.01	-0.02	-0.03	0
-0.71	-0.71	-0.71	-0.72	-0.71	-0.71	-0.71	54.0	0	-0.03	-0.03	0.01	-0.03	-0.03	0
-0.68	-0.68	-0.68	-0.70	-0.68	-0.68	-0.68	56.0	0	-0.03	-0.03	0.01	-0.03	-0.03	0
-0.66	-0.66	-0.66	-0.67	-0.66	-0.66	-0.66	58.0	0	-0.04	-0.03	0.02	-0.03	-0.04	0
-0.63	-0.63	-0.63	-0.64	-0.63	-0.63	-0.63	60.0	0	-0.04	-0.03	0.02	-0.03	-0.04	0
0.00	0.00	0.00	0.00	0.00	0.00	0.00		0	0.00	0.00	0.00	0.00	0.00	0
-0.63	-0.63	-0.63	-0.64	-0.63	-0.63	-0.63	60.0	0	-0.04	-0.03	0.02	-0.03	-0.04	0
-0.60	-0.60	-0.60	-0.61	-0.60	-0.60	-0.60	62.0	0	-0.05	-0.04	0.02	-0.04	-0.05	0
-0.57	-0.57	-0.57	-0.58	-0.57	-0.57	-0.57	64.0	0	-0.05	-0.04	0.02	-0.04	-0.05	0

St. Vt. and Warping Shear Stresses

0	1	2	3	2'	1'	0'	Z	0	1	2	3	2'	1'	0'
-0.53	-0.53	-0.53	-0.54	-0.53	-0.53	-0.53	66.0	0	-0.06	-0.05	0.02	-0.05	-0.06	0
-0.49	-0.49	-0.49	-0.50	-0.49	-0.49	-0.49	68.0	0	-0.06	-0.05	0.02	-0.05	-0.06	0
-0.44	-0.44	-0.44	-0.45	-0.44	-0.44	-0.44	70.0	0	-0.07	-0.06	0.03	-0.06	-0.07	0
-0.39	-0.39	-0.39	-0.40	-0.39	-0.39	-0.39	72.0	0	-0.07	-0.06	0.03	-0.06	-0.07	0
-0.34	-0.34	-0.34	-0.35	-0.34	-0.34	-0.34	74.0	0	-0.08	-0.07	0.03	-0.07	-0.08	0
-0.28	-0.28	-0.28	-0.29	-0.28	-0.28	-0.28	76.0	0	-0.09	-0.07	0.04	-0.07	-0.09	0
-0.22	-0.22	-0.22	-0.22	-0.22	-0.22	-0.22	78.0	0	-0.10	-0.08	0.04	-0.08	-0.10	0
-0.14	-0.14	-0.14	-0.15	-0.14	-0.14	-0.14	80.0	0	-0.11	-0.09	0.04	-0.09	-0.11	0
0.00	0.00	0.00	0.00	0.00	0.00	0.00		0	0.00	0.00	0.00	0.00	0.00	0
-0.14	-0.14	-0.14	-0.15	-0.14	-0.14	-0.14	80.0	0	-0.11	-0.09	0.04	-0.09	-0.11	0
-0.06	-0.06	-0.06	-0.06	-0.06	-0.06	-0.06	82.0	0	-0.12	-0.10	0.05	-0.10	-0.12	0
0.02	0.02	0.02	0.02	0.02	0.02	0.02	84.0	0	-0.13	-0.11	0.05	-0.11	-0.13	0
0.12	0.12	0.12	0.12	0.12	0.12	0.12	86.0	0	-0.14	-0.12	0.06	-0.12	-0.14	0
0.23	0.23	0.23	0.23	0.23	0.23	0.23	88.0	0	-0.16	-0.13	0.06	-0.13	-0.16	0
0.34	0.34	0.34	0.35	0.34	0.34	0.34	90.0	0	-0.18	-0.14	0.07	-0.14	-0.18	0
0.47	0.47	0.47	0.48	0.47	0.47	0.47	92.0	0	-0.19	-0.16	0.08	-0.16	-0.19	0
0.61	0.61	0.61	0.62	0.61	0.61	0.61	94.0	0	-0.21	-0.17	0.09	-0.17	-0.21	0
0.77	0.77	0.77	0.78	0.77	0.77	0.77	96.0	0	-0.23	-0.19	0.09	-0.19	-0.23	0
0.94	0.94	0.94	0.96	0.94	0.94	0.94	98.0	0	-0.26	-0.21	0.10	-0.21	-0.26	0
1.13	1.13	1.13	1.15	1.13	1.13	1.13	100.0	0	-0.28	-0.23	0.11	-0.23	-0.28	0
0.00	0.00	0.00	0.00	0.00	0.00	0.00		0	0.00	0.00	0.00	0.00	0.00	0
1.13	1.13	1.13	1.15	1.13	1.13	1.13	100.0	0	-0.29	-0.23	0.11	-0.23	-0.29	0
1.33	1.33	1.33	1.36	1.33	1.33	1.33	102.0	0	-0.31	-0.26	0.13	-0.26	-0.31	0
1.56	1.56	1.56	1.59	1.56	1.56	1.56	104.0	0	-0.34	-0.28	0.14	-0.28	-0.34	0
1.81	1.81	1.81	1.85	1.81	1.81	1.81	106.0	0	-0.38	-0.31	0.15	-0.31	-0.38	0
2.09	2.09	2.09	2.13	2.09	2.09	2.09	108.0	0	-0.41	-0.34	0.17	-0.34	-0.41	0
2.39	2.39	2.39	2.44	2.39	2.39	2.39	110.0	0	-0.46	-0.37	0.18	-0.37	-0.46	0
2.73	2.73	2.73	2.78	2.73	2.73	2.73	112.0	0	-0.50	-0.41	0.20	-0.41	-0.50	0
3.10	3.10	3.10	3.15	3.10	3.10	3.10	114.0	0	-0.55	-0.45	0.22	-0.45	-0.55	0
3.50	3.50	3.50	3.56	3.50	3.50	3.50	116.0	0	-0.61	-0.50	0.24	-0.50	-0.61	0
3.95	3.95	3.95	4.02	3.95	3.95	3.95	118.0	0	-0.67	-0.55	0.27	-0.55	-0.67	0
4.44	4.44	4.44	4.52	4.44	4.44	4.44	120.0	0	-0.73	-0.60	0.29	-0.60	-0.73	0
				0.00	0.00	0.00		0	0.00	0.00	0.00	0.00	0.00	0
4.44	4.44	4.44	4.52	4.44	4.44	4.44	120.0	0	0.79	0.65	-0.32	0.65	0.79	0
4.88	4.88	4.88	4.96	4.88	4.88	4.88	121.8	0	0.74	0.60	-0.30	0.60	0.74	0
5.28	5.28	5.28	5.37	5.28	5.28	5.28	123.6	0	0.68	0.56	-0.27	0.56	0.68	0
5.64	5.64	5.64	5.75	5.64	5.64	5.64	125.4	0	0.63	0.52	-0.25	0.52	0.63	0
5.97	5.97	5.97	6.08	5.97	5.97	5.97	127.2	0	0.59	0.48	-0.24	0.48	0.59	0
6.27	6.27	6.27	6.38	6.27	6.27	6.27	129.0	0	0.55	0.45	-0.22	0.45	0.55	0
6.54	6.54	6.54	6.66	6.54	6.54	6.54	130.8	0	0.51	0.42	-0.20	0.42	0.51	0
6.78	6.78	6.78	6.90	6.78	6.78	6.78	132.6	0	0.48	0.39	-0.19	0.39	0.48	0
7.00	7.00	7.00	7.12	7.00	7.00	7.00	134.4	0	0.45	0.37	-0.18	0.37	0.45	0
7.19	7.19	7.19	7.32	7.19	7.19	7.19	136.2	0	0.42	0.34	-0.17	0.34	0.42	0
7.36	7.36	7.36	7.49	7.36	7.36	7.36	138.0	0	0.40	0.33	-0.16	0.33	0.40	0
				0.00	0.00	0.00		0	0.00	0.00	0.00	0.00	0.00	0

0	1	2	3	2'	1'	0'	Z	0	1	2	3	2'	1'	0'
7.36	7.36	7.36	7.49	7.36	7.36	7.36	138.0	0	0.40	0.32	-0.16	0.32	0.40	0
7.50	7.50	7.50	7.64	7.50	7.50	7.50	139.8	0	0.38	0.31	-0.15	0.31	0.38	0
7.63	7.63	7.63	7.77	7.63	7.63	7.63	141.6	0	0.36	0.29	-0.14	0.29	0.36	0
7.74	7.74	7.74	7.87	7.74	7.74	7.74	143.4	0	0.35	0.28	-0.14	0.28	0.35	0
7.83	7.83	7.83	7.97	7.83	7.83	7.83	145.2	0	0.33	0.27	-0.13	0.27	0.33	0
7.90	7.90	7.90	8.04	7.90	7.90	7.90	147.0	0	0.32	0.26	-0.13	0.26	0.32	0
7.95	7.95	7.95	8.09	7.95	7.95	7.95	148.8	0	0.32	0.26	-0.13	0.26	0.32	0
7.99	7.99	7.99	8.13	7.99	7.99	7.99	150.6	0	0.31	0.26	-0.13	0.26	0.31	0
8.00	8.00	8.00	8.15	8.00	8.00	8.00	152.4	0	0.31	0.25	-0.12	0.25	0.31	0
8.00	8.00	8.00	8.15	8.00	8.00	8.00	154.2	0	0.31	0.25	-0.12	0.25	0.31	0
7.99	7.99	7.99	8.13	7.99	7.99	7.99	156.0	0	0.31	0.26	-0.13	0.26	0.31	0
				0.00	0.00	0.00		0	0.00	0.00	0.00	0.00	0.00	0
7.99	7.99	7.99	8.13	7.99	7.99	7.99	156.0	0	0.31	0.26	-0.13	0.26	0.31	0
7.96	7.96	7.96	8.10	7.96	7.96	7.96	157.8	0	0.32	0.26	-0.13	0.26	0.32	0
7.90	7.90	7.90	8.05	7.90	7.90	7.90	159.6	0	0.32	0.26	-0.13	0.26	0.32	0
7.84	7.84	7.84	7.98	7.84	7.84	7.84	161.4	0	0.33	0.27	-0.13	0.27	0.33	0
7.75	7.75	7.75	7.89	7.75	7.75	7.75	163.2	0	0.34	0.28	-0.14	0.28	0.34	0
7.65	7.65	7.65	7.79	7.65	7.65	7.65	165.0	0	0.36	0.29	-0.14	0.29	0.36	0
7.53	7.53	7.53	7.67	7.53	7.53	7.53	166.8	0	0.37	0.31	-0.15	0.31	0.37	0
7.39	7.39	7.39	7.52	7.39	7.39	7.39	168.6	0	0.39	0.32	-0.16	0.32	0.39	0
7.22	7.22	7.22	7.35	7.22	7.22	7.22	170.4	0	0.42	0.34	-0.17	0.34	0.42	0
7.04	7.04	7.04	7.16	7.04	7.04	7.04	172.2	0	0.44	0.36	-0.18	0.36	0.44	0
6.82	6.82	6.82	6.95	6.82	6.82	6.82	174.0	0	0.47	0.38	-0.19	0.38	0.47	0
				0.00	0.00	0.00		0	0.00	0.00	0.00	0.00	0.00	0
6.82	6.82	6.82	6.95	6.82	6.82	6.82	174.0	0	0.48	0.39	-0.19	0.39	0.48	0
6.59	6.59	6.59	6.71	6.59	6.59	6.59	175.8	0	0.50	0.41	-0.20	0.41	0.50	0
6.32	6.32	6.32	6.44	6.32	6.32	6.32	177.6	0	0.54	0.44	-0.22	0.44	0.54	0
6.03	6.03	6.03	6.14	6.03	6.03	6.03	179.4	0	0.58	0.47	-0.23	0.47	0.58	0
5.71	5.71	5.71	5.81	5.71	5.71	5.71	181.2	0	0.62	0.51	-0.25	0.51	0.62	0
5.35	5.35	5.35	5.45	5.35	5.35	5.35	183.0	0	0.67	0.55	-0.27	0.55	0.67	0
4.96	4.96	4.96	5.05	4.96	4.96	4.96	184.8	0	0.73	0.59	-0.29	0.59	0.73	0
4.52	4.52	4.52	4.60	4.52	4.52	4.52	186.6	0	0.79	0.64	-0.32	0.64	0.79	0
4.05	4.05	4.05	4.12	4.05	4.05	4.05	188.4	0	0.85	0.70	-0.34	0.70	0.85	0
3.52	3.52	3.52	3.59	3.52	3.52	3.52	190.2	0	0.92	0.75	-0.37	0.75	0.92	0
2.95	2.95	2.95	3.01	2.95	2.95	2.95	192.0	0	1.00	0.81	-0.40	0.81	1.00	0
				0.00	0.00	0.00		0	0.00	0.00	0.00	0.00	0.00	0
2.95	2.95	2.95	3.01	2.95	2.95	2.95	192.0	0	-0.95	-0.77	0.38	-0.77	-0.95	0
2.29	2.29	2.29	2.33	2.29	2.29	2.29	194.1	0	-0.86	-0.70	0.34	-0.70	-0.86	0
1.69	1.69	1.69	1.72	1.69	1.69	1.69	196.2	0	-0.78	-0.64	0.31	-0.64	-0.78	0
1.14	1.14	1.14	1.16	1.14	1.14	1.14	198.3	0	-0.71	-0.58	0.28	-0.58	-0.71	0
0.65	0.65	0.65	0.66	0.65	0.65	0.65	200.4	0	-0.64	-0.52	0.26	-0.52	-0.64	0
0.21	0.21	0.21	0.21	0.21	0.21	0.21	202.5	0	-0.58	-0.47	0.23	-0.47	-0.58	0
-0.20	-0.20	-0.20	-0.20	-0.20	-0.20	-0.20	204.6	0	-0.52	-0.43	0.21	-0.43	-0.52	0
-0.56	-0.56	-0.56	-0.57	-0.56	-0.56	-0.56	206.7	0	-0.47	-0.38	0.19	-0.38	-0.47	0
-0.89	-0.89	-0.89	-0.90	-0.89	-0.89	-0.89	208.8	0	-0.43	-0.35	0.17	-0.35	-0.43	0

0	1	2	3	2'	1'	0'	Z	0	1	2	3	2'	1'	0'
-1.19	-1.19	-1.19	-1.21	-1.19	-1.19	-1.19	210.9	0	-0.39	-0.32	0.16	-0.32	-0.39	0
-1.45	-1.45	-1.45	-1.48	-1.45	-1.45	-1.45	213.0	0	-0.36	-0.29	0.14	-0.29	-0.36	0
0.00	0.00	0.00	0.00	0.00	0.00	0.00		0	0.00	0.00	0.00	0.00	0.00	0
-1.45	-1.45	-1.45	-1.48	-1.45	-1.45	-1.45	213.0	0	-0.35	-0.28	0.14	-0.28	-0.35	0
-1.70	-1.70	-1.70	-1.73	-1.70	-1.70	-1.70	215.1	0	-0.32	-0.26	0.13	-0.26	-0.32	0
-1.92	-1.92	-1.92	-1.95	-1.92	-1.92	-1.92	217.2	0	-0.29	-0.23	0.11	-0.23	-0.29	0
-2.12	-2.12	-2.12	-2.15	-2.12	-2.12	-2.12	219.3	0	-0.26	-0.21	0.10	-0.21	-0.26	0
-2.30	-2.30	-2.30	-2.34	-2.30	-2.30	-2.30	221.4	0	-0.23	-0.19	0.09	-0.19	-0.23	0
-2.46	-2.46	-2.46	-2.50	-2.46	-2.46	-2.46	223.5	0	-0.21	-0.17	0.08	-0.17	-0.21	0
-2.61	-2.61	-2.61	-2.65	-2.61	-2.61	-2.61	225.6	0	-0.19	-0.16	0.08	-0.16	-0.19	0
-2.74	-2.74	-2.74	-2.79	-2.74	-2.74	-2.74	227.7	0	-0.17	-0.14	0.07	-0.14	-0.17	0
-2.86	-2.86	-2.86	-2.91	-2.86	-2.86	-2.86	229.8	0	-0.16	-0.13	0.06	-0.13	-0.16	0
-2.97	-2.97	-2.97	-3.02	-2.97	-2.97	-2.97	231.9	0	-0.14	-0.12	0.06	-0.12	-0.14	0
-3.06	-3.06	-3.06	-3.12	-3.06	-3.06	-3.06	234.0	0	-0.13	-0.11	0.05	-0.11	-0.13	0
0.00	0.00	0.00	0.00	0.00	0.00	0.00		0	0.00	0.00	0.00	0.00	0.00	0
-3.06	-3.06	-3.06	-3.12	-3.06	-3.06	-3.06	234.0	0	-0.13	-0.10	0.05	-0.10	-0.13	0
-3.15	-3.15	-3.15	-3.21	-3.15	-3.15	-3.15	236.1	0	-0.12	-0.09	0.05	-0.09	-0.12	0
-3.23	-3.23	-3.23	-3.29	-3.23	-3.23	-3.23	238.2	0	-0.11	-0.09	0.04	-0.09	-0.11	0
-3.31	-3.31	-3.31	-3.37	-3.31	-3.31	-3.31	240.3	0	-0.10	-0.08	0.04	-0.08	-0.10	0
-3.37	-3.37	-3.37	-3.43	-3.37	-3.37	-3.37	242.4	0	-0.09	-0.07	0.03	-0.07	-0.09	0
-3.43	-3.43	-3.43	-3.49	-3.43	-3.43	-3.43	244.5	0	-0.08	-0.06	0.03	-0.06	-0.08	0
-3.48	-3.48	-3.48	-3.54	-3.48	-3.48	-3.48	246.6	0	-0.07	-0.06	0.03	-0.06	-0.07	0
-3.53	-3.53	-3.53	-3.59	-3.53	-3.53	-3.53	248.7	0	-0.06	-0.05	0.03	-0.05	-0.06	0
-3.57	-3.57	-3.57	-3.64	-3.57	-3.57	-3.57	250.8	0	-0.06	-0.05	0.02	-0.05	-0.06	0
-3.61	-3.61	-3.61	-3.68	-3.61	-3.61	-3.61	252.9	0	-0.05	-0.04	0.02	-0.04	-0.05	0
-3.65	-3.65	-3.65	-3.71	-3.65	-3.65	-3.65	255.0	0	-0.05	-0.04	0.02	-0.04	-0.05	0
0.00	0.00	0.00	0.00	0.00	0.00	0.00		0	0.00	0.00	0.00	0.00	0.00	0
-3.65	-3.65	-3.65	-3.71	-3.65	-3.65	-3.65	255.0	0	-0.05	-0.04	0.02	-0.04	-0.05	0
-3.68	-3.68	-3.68	-3.74	-3.68	-3.68	-3.68	257.1	0	-0.04	-0.04	0.02	-0.04	-0.04	0
-3.71	-3.71	-3.71	-3.77	-3.71	-3.71	-3.71	259.2	0	-0.04	-0.03	0.02	-0.03	-0.04	0
-3.73	-3.73	-3.73	-3.80	-3.73	-3.73	-3.73	261.3	0	-0.04	-0.03	0.01	-0.03	-0.04	0
-3.75	-3.75	-3.75	-3.82	-3.75	-3.75	-3.75	263.4	0	-0.03	-0.03	0.01	-0.03	-0.03	0
-3.77	-3.77	-3.77	-3.84	-3.77	-3.77	-3.77	265.5	0	-0.03	-0.03	0.01	-0.03	-0.03	0
-3.79	-3.79	-3.79	-3.86	-3.79	-3.79	-3.79	267.6	0	-0.03	-0.02	0.01	-0.02	-0.03	0
-3.80	-3.80	-3.80	-3.8/	-3.80	-3.80	-3.80	269.7	0	-0.03	-0.02	0.01	-0.02	-0.03	0
-3.82	-3.82	-3.82	-3.89	-3.82	-3.82	-3.82	271.8	0	-0.03	-0.02	0.01	-0.02	-0.03	0
-3.83	-3.83	-3.83	-3.90	-3.83	-3.83	-3.83	2/3.9	0	-0.02	-0.02	0.01	-0.02	-0.02	0
-3.84	-3.84	-3.84	-3.91	-3.84	-3.84	-3.84	2/6.0	0	-0.02	-0.02	0.01	-0.02	-0.02	0
0.00	0.00	0.00	0.00	0.00	0.00	0.00	276.0	0	0.00	0.00	0.00	0.00	0.00	0
-3.84	-3.84	-3.84	-3.91	-3.84	-3.84	-3.84	276.0	0	-0.02	-0.02	0.01	-0.02	-0.02	0
-5.85	-3.83	-3.83	-5.91	-3.83	-3.83	-3.83	2/8.1	0	-0.02	-0.02	0.01	-0.02	-0.02	0
-3.83	-3.83	-3.83	-3.92	-3.83	-3.83	-3.83	280.2	0	-0.02	-0.02	0.01	-0.02	-0.02	0
-5.80	-3.80	-3.80	-3.95	-3.80	-3.80	-3.80	282.5	0	-0.02	-0.02	0.01	-0.02	-0.02	0
-3.80	-3.80	-3.80	-3.93	-3.80	-3.80	-3.80	284.4	0	-0.02	-0.02	0.01	-0.02	-0.02	0
-3.80	-3.80	-3.80	-5.93	-3.80	-3.80	-3.80	280.3	U	-0.02	-0.02	0.01	-0.02	-0.02	U

0	1	2	3	2'	1'	0'	Z	0	1	2	3	2'	1'	0'
-3.86	-3.86	-3.86	-3.93	-3.86	-3.86	-3.86	288.6	0	-0.02	-0.02	0.01	-0.02	-0.02	0
-3.86	-3.86	-3.86	-3.93	-3.86	-3.86	-3.86	290.7	0	-0.02	-0.02	0.01	-0.02	-0.02	0
-3.86	-3.86	-3.86	-3.93	-3.86	-3.86	-3.86	292.8	0	-0.02	-0.02	0.01	-0.02	-0.02	0
-3.85	-3.85	-3.85	-3.92	-3.85	-3.85	-3.85	294.9	0	-0.02	-0.02	0.01	-0.02	-0.02	0
-3.85	-3.85	-3.85	-3.92	-3.85	-3.85	-3.85	297.0	0	-0.02	-0.02	0.01	-0.02	-0.02	0
0.00	0.00	0.00	0.00	0.00	0.00	0.00		0	0.00	0.00	0.00	0.00	0.00	0
-3.85	-3.85	-3.85	-3.92	-3.85	-3.85	-3.85	297.0	0	-0.02	-0.02	0.01	-0.02	-0.02	0
-3.84	-3.84	-3.84	-3.91	-3.84	-3.84	-3.84	299.1	0	-0.02	-0.02	0.01	-0.02	-0.02	0
-3.83	-3.83	-3.83	-3.90	-3.83	-3.83	-3.83	301.2	0	-0.02	-0.02	0.01	-0.02	-0.02	0
-3.82	-3.82	-3.82	-3.89	-3.82	-3.82	-3.82	303.3	0	-0.02	-0.02	0.01	-0.02	-0.02	0
-3.81	-3.81	-3.81	-3.88	-3.81	-3.81	-3.81	305.4	0	-0.03	-0.02	0.01	-0.02	-0.03	0
-3.80	-3.80	-3.80	-3.86	-3.80	-3.80	-3.80	307.5	0	-0.03	-0.02	0.01	-0.02	-0.03	0
-3.78	-3.78	-3.78	-3.85	-3.78	-3.78	-3.78	309.6	0	-0.03	-0.02	0.01	-0.02	-0.03	0
-3.76	-3.76	-3.76	-3.83	-3.76	-3.76	-3.76	311.7	0	-0.03	-0.03	0.01	-0.03	-0.03	0
-3.74	-3.74	-3.74	-3.81	-3.74	-3.74	-3.74	313.8	0	-0.04	-0.03	0.01	-0.03	-0.04	0
-3.72	-3.72	-3.72	-3.78	-3.72	-3.72	-3.72	315.9	0	-0.04	-0.03	0.02	-0.03	-0.04	0
-3.69	-3.69	-3.69	-3.76	-3.69	-3.69	-3.69	318.0	0	-0.04	-0.03	0.02	-0.03	-0.04	0
0.00	0.00	0.00	0.00	0.00	0.00	0.00		0	0.00	0.00	0.00	0.00	0.00	0
-3.69	-3.69	-3.69	-3.76	-3.69	-3.69	-3.69	318.0	0	-0.04	-0.04	0.02	-0.04	-0.04	0
-3.66	-3.66	-3.66	-3.73	-3.66	-3.66	-3.66	320.1	0	-0.05	-0.04	0.02	-0.04	-0.05	0
-3.63	-3.63	-3.63	-3.69	-3.63	-3.63	-3.63	322.2	0	-0.05	-0.04	0.02	-0.04	-0.05	0
-3.59	-3.59	-3.59	-3.66	-3.59	-3.59	-3.59	324.3	0	-0.06	-0.05	0.02	-0.05	-0.06	0
-3.55	-3.55	-3.55	-3.62	-3.55	-3.55	-3.55	326.4	0	-0.06	-0.05	0.02	-0.05	-0.06	0
-3.51	-3.51	-3.51	-3.57	-3.51	-3.51	-3.51	328.5	0	-0.07	-0.06	0.03	-0.06	-0.07	0
-3.46	-3.46	-3.46	-3.52	-3.46	-3.46	-3.46	330.6	0	-0.07	-0.06	0.03	-0.06	-0.07	0
-3.40	-3.40	-3.40	-3.46	-3.40	-3.40	-3.40	332.7	0	-0.08	-0.07	0.03	-0.07	-0.08	0
-3.34	-3.34	-3.34	-3.40	-3.34	-3.34	-3.34	334.8	0	-0.09	-0.07	0.04	-0.07	-0.09	0
-3.27	-3.27	-3.27	-3.33	-3.27	-3.27	-3.27	336.9	0	-0.10	-0.08	0.04	-0.08	-0.10	0
-3.19	-3.19	-3.19	-3.25	-3.19	-3.19	-3.19	339.0	0	-0.11	-0.09	0.04	-0.09	-0.11	0
0.00	0.00	0.00	0.00	0.00	0.00	0.00		0	0.00	0.00	0.00	0.00	0.00	0
-3.19	-3.19	-3.19	-3.25	-3.19	-3.19	-3.19	339.0	0	-0.11	-0.09	0.05	-0.09	-0.11	0
-3.11	-3.11	-3.11	-3.17	-3.11	-3.11	-3.11	341.1	0	-0.12	-0.10	0.05	-0.10	-0.12	0
-3.02	-3.02	-3.02	-3.07	-3.02	-3.02	-3.02	343.2	0	-0.13	-0.11	0.05	-0.11	-0.13	0
-2.91	-2.91	-2.91	-2.97	-2.91	-2.91	-2.91	345.3	0	-0.15	-0.12	0.06	-0.12	-0.15	0
-2.80	-2.80	-2.80	-2.85	-2.80	-2.80	-2.80	347.4	0	-0.16	-0.13	0.07	-0.13	-0.16	0
-2.67	-2.67	-2.67	-2.72	-2.67	-2.67	-2.67	349.5	0	-0.18	-0.15	0.07	-0.15	-0.18	0
-2.53	-2.53	-2.53	-2.58	-2.53	-2.53	-2.53	351.6	0	-0.20	-0.16	0.08	-0.16	-0.20	0
-2.38	-2.38	-2.38	-2.42	-2.38	-2.38	-2.38	353.7	0	-0.22	-0.18	0.09	-0.18	-0.22	0
-2.21	-2.21	-2.21	-2.25	-2.21	-2.21	-2.21	355.8	0	-0.25	-0.20	0.10	-0.20	-0.25	0
-2.02	-2.02	-2.02	-2.05	-2.02	-2.02	-2.02	357.9	0	-0.27	-0.22	0.11	-0.22	-0.27	0
-1.81	-1.81	-1.81	-1.84	-1.81	-1.81	-1.81	360.0	0	-0.30	-0.24	0.12	-0.24	-0.30	0
				0.00	0.00	0.00		0	0.00	0.00	0.00	0.00	0.00	0
-1.81	-1.81	-1.81	-1.84	-1.81	-1.81	-1.81	360.0	0	0.30	0.24	-0.12	0.24	0.30	0
-1.61	-1.61	-1.61	-1.64	-1.61	-1.61	-1.61	362.0	0	0.27	0.22	-0.11	0.22	0.27	0
-1.43	-1.43	-1.43	-1.45	-1.43	-1.43	-1.43	364.0	0	0.25	0.20	-0.10	0.20	0.25	0

0	1	2	3	2'	1'	0'	Z	0	1	2	3	2'	1'	0'
-1.26	-1.26	-1.26	-1.28	-1.26	-1.26	-1.26	366.0	0	0.23	0.18	-0.09	0.18	0.23	0
-1.11	-1.11	-1.11	-1.13	-1.11	-1.11	-1.11	368.0	0	0.20	0.17	-0.08	0.17	0.20	0
-0.98	-0.98	-0.98	-0.99	-0.98	-0.98	-0.98	370.0	0	0.19	0.15	-0.07	0.15	0.19	0
-0.85	-0.85	-0.85	-0.87	-0.85	-0.85	-0.85	372.0	0	0.17	0.14	-0.07	0.14	0.17	0
-0.74	-0.74	-0.74	-0.75	-0.74	-0.74	-0.74	374.0	0	0.15	0.13	-0.06	0.13	0.15	0
-0.64	-0.64	-0.64	-0.65	-0.64	-0.64	-0.64	376.0	0	0.14	0.11	-0.06	0.11	0.14	0
-0.54	-0.54	-0.54	-0.55	-0.54	-0.54	-0.54	378.0	0	0.13	0.10	-0.05	0.10	0.13	0
-0.46	-0.46	-0.46	-0.47	-0.46	-0.46	-0.46	380.0	0	0.12	0.10	-0.05	0.10	0.12	0
0.00	0.00	0.00	0.00	0.00	0.00	0.00		0	0.00	0.00	0.00	0.00	0.00	0
-0.46	-0.46	-0.46	-0.47	-0.46	-0.46	-0.46	380.0	0	0.11	0.09	-0.05	0.09	0.11	0
-0.38	-0.38	-0.38	-0.39	-0.38	-0.38	-0.38	382.0	0	0.10	0.09	-0.04	0.09	0.10	0
-0.31	-0.31	-0.31	-0.32	-0.31	-0.31	-0.31	384.0	0	0.10	0.08	-0.04	0.08	0.10	0
-0.25	-0.25	-0.25	-0.25	-0.25	-0.25	-0.25	386.0	0	0.09	0.07	-0.03	0.07	0.09	0
-0.19	-0.19	-0.19	-0.20	-0.19	-0.19	-0.19	388.0	0	0.08	0.06	-0.03	0.06	0.08	0
-0.14	-0.14	-0.14	-0.14	-0.14	-0.14	-0.14	390.0	0	0.07	0.06	-0.03	0.06	0.07	0
-0.09	-0.09	-0.09	-0.09	-0.09	-0.09	-0.09	392.0	0	0.06	0.05	-0.03	0.05	0.06	0
-0.05	-0.05	-0.05	-0.05	-0.05	-0.05	-0.05	394.0	0	0.06	0.05	-0.02	0.05	0.06	0
-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	396.0	0	0.05	0.04	-0.02	0.04	0.05	0
0.03	0.03	0.03	0.03	0.03	0.03	0.03	398.0	0	0.05	0.04	-0.02	0.04	0.05	0
0.06	0.06	0.06	0.06	0.06	0.06	0.06	400.0	0	0.04	0.04	-0.02	0.04	0.04	0
0.00	0.00	0.00	0.00	0.00	0.00	0.00		0	0.00	0.00	0.00	0.00	0.00	0
0.06	0.06	0.06	0.06	0.06	0.06	0.06	400.0	0	0.04	0.04	-0.02	0.04	0.04	0
0.09	0.09	0.09	0.09	0.09	0.09	0.09	402.0	0	0.04	0.03	-0.02	0.03	0.04	0
0.11	0.11	0.11	0.12	0.11	0.11	0.11	404.0	0	0.04	0.03	-0.01	0.03	0.04	0
0.14	0.14	0.14	0.14	0.14	0.14	0.14	406.0	0	0.03	0.03	-0.01	0.03	0.03	0
0.16	0.16	0.16	0.16	0.16	0.16	0.16	408.0	0	0.03	0.02	-0.01	0.02	0.03	0
0.18	0.18	0.18	0.18	0.18	0.18	0.18	410.0	0	0.03	0.02	-0.01	0.02	0.03	0
0.20	0.20	0.20	0.20	0.20	0.20	0.20	412.0	0	0.02	0.02	-0.01	0.02	0.02	0
0.22	0.22	0.22	0.22	0.22	0.22	0.22	414.0	0	0.02	0.02	-0.01	0.02	0.02	0
0.23	0.23	0.23	0.23	0.23	0.23	0.23	416.0	0	0.02	0.02	-0.01	0.02	0.02	0
0.24	0.24	0.24	0.25	0.24	0.24	0.24	418.0	0	0.02	0.02	-0.01	0.02	0.02	0
0.26	0.26	0.26	0.26	0.26	0.26	0.26	420.0	0	0.02	0.01	-0.01	0.01	0.02	0
0.00	0.00	0.00	0.00	0.00	0.00	0.00		0	0.00	0.00	0.00	0.00	0.00	0
0.26	0.26	0.26	0.26	0.26	0.26	0.26	420.0	0	0.02	0.01	-0.01	0.01	0.02	0
0.27	0.27	0.27	0.27	0.27	0.27	0.27	422.0	0	0.02	0.01	-0.01	0.01	0.02	0
0.28	0.28	0.28	0.28	0.28	0.28	0.28	424.0	0	0.01	0.01	-0.01	0.01	0.01	0
0.29	0.29	0.29	0.29	0.29	0.29	0.29	426.0	0	0.01	0.01	-0.01	0.01	0.01	0
0.30	0.30	0.30	0.30	0.30	0.30	0.30	428.0	0	0.01	0.01	0.00	0.01	0.01	0
0.30	0.30	0.30	0.31	0.30	0.30	0.30	430.0	0	0.01	0.01	0.00	0.01	0.01	0
0.31	0.31	0.31	0.32	0.31	0.31	0.31	432.0	0	0.01	0.01	0.00	0.01	0.01	0
0.32	0.32	0.32	0.32	0.32	0.32	0.32	434.0	0	0.01	0.01	0.00	0.01	0.01	0
0.32	0.32	0.32	0.33	0.32	0.32	0.32	436.0	0	0.01	0.01	0.00	0.01	0.01	0
0.33	0.33	0.33	0.33	0.33	0.33	0.33	438.0	0	0.01	0.01	0.00	0.01	0.01	0
0.33	0.33	0.33	0.34	0.33	0.33	0.33	440.0	0	0.01	0.01	0.00	0.01	0.01	0
0.00	0.00	0.00	0.00	0.00	0.00	0.00		0	0.00	0.00	0.00	0.00	0.00	0

0	1	2	3	2'	1'	0'	Z	0	1	2	3	2'	1'	0'
0.33	0.33	0.33	0.34	0.33	0.33	0.33	440.0	0	0.01	0.01	0.00	0.01	0.01	0
0.34	0.34	0.34	0.34	0.34	0.34	0.34	442.0	0	0.01	0.00	0.00	0.00	0.01	0
0.34	0.34	0.34	0.35	0.34	0.34	0.34	444.0	0	0.01	0.00	0.00	0.00	0.01	0
0.34	0.34	0.34	0.35	0.34	0.34	0.34	446.0	0	0.01	0.00	0.00	0.00	0.01	0
0.35	0.35	0.35	0.35	0.35	0.35	0.35	448.0	0	0.00	0.00	0.00	0.00	0.00	0
0.35	0.35	0.35	0.36	0.35	0.35	0.35	450.0	0	0.00	0.00	0.00	0.00	0.00	0
0.35	0.35	0.35	0.36	0.35	0.35	0.35	452.0	0	0.00	0.00	0.00	0.00	0.00	0
0.35	0.35	0.35	0.36	0.35	0.35	0.35	454.0	0	0.00	0.00	0.00	0.00	0.00	0
0.36	0.36	0.36	0.36	0.36	0.36	0.36	456.0	0	0.00	0.00	0.00	0.00	0.00	0
0.36	0.36	0.36	0.37	0.36	0.36	0.36	458.0	0	0.00	0.00	0.00	0.00	0.00	0
0.36	0.36	0.36	0.37	0.36	0.36	0.36	460.0	0	0.00	0.00	0.00	0.00	0.00	0
0.00	0.00	0.00	0.00	0.00	0.00	0.00		0	0.00	0.00	0.00	0.00	0.00	0
0.36	0.36	0.36	0.37	0.36	0.36	0.36	460.0	0	0.00	0.00	0.00	0.00	0.00	0
0.36	0.36	0.36	0.37	0.36	0.36	0.36	462.0	0	0.00	0.00	0.00	0.00	0.00	0
0.36	0.36	0.36	0.37	0.36	0.36	0.36	464.0	0	0.00	0.00	0.00	0.00	0.00	0
0.36	0.36	0.36	0.37	0.36	0.36	0.36	466.0	0	0.00	0.00	0.00	0.00	0.00	0
0.36	0.36	0.36	0.37	0.36	0.36	0.36	468.0	0	0.00	0.00	0.00	0.00	0.00	0
0.37	0.37	0.37	0.37	0.37	0.37	0.37	470.0	0	0.00	0.00	0.00	0.00	0.00	0
0.37	0.37	0.37	0.37	0.37	0.37	0.37	472.0	0	0.00	0.00	0.00	0.00	0.00	0
0.37	0.37	0.37	0.37	0.37	0.37	0.37	474.0	0	0.00	0.00	0.00	0.00	0.00	0
0.37	0.37	0.37	0.37	0.37	0.37	0.37	476.0	0	0.00	0.00	0.00	0.00	0.00	0
0.37	0.37	0.37	0.37	0.37	0.37	0.37	478.0	0	0.00	0.00	0.00	0.00	0.00	0
0.37	0.37	0.37	0.37	0.37	0.37	0.37	480.0	0	0.00	0.00	0.00	0.00	0.00	0

www.manaraa.com

Pure and Warping Torsion Shear Stresses

Values for Bending Shear Stress

S	0	1	2	3	2'	1'	0'
t	0.501	0.501	0.501	0.510	0.501	0.501	0.501
Q	0.000	5.479	7.830	17.000	7.830	5.479	0.000
		Sx		Ix	162.0		

Table of Bending Stresses

		Shea	ar Stre	esses,	V*Q	/ I*t		-	Norm	al Stre	SS	ses, M	/ Sx	
"s"=	0	1	2	3	2'	1'	0'	0	1	2	3	2'	1'	0'
Z														
0.0	0	0.13	0.19	0.41	0.19	0.13	0	0.00	0.00	0.00	0	0.00	0.00	0.00
2.0	0	0.13	0.19	0.41	0.19	0.13	0	0.15	0.15	0.15	0	-0.15	-0.15	-0.15
4.0	0	0.13	0.19	0.41	0.19	0.13	0	0.30	0.30	0.30	0	-0.30	-0.30	-0.30
6.0	0	0.13	0.19	0.41	0.19	0.13	0	0.44	0.44	0.44	0	-0.44	-0.44	-0.44
8.0	0	0.13	0.19	0.41	0.19	0.13	0	0.59	0.59	0.59	0	-0.59	-0.59	-0.59
10.0	0	0.13	0.19	0.41	0.19	0.13	0	0.74	0.74	0.74	0	-0.74	-0.74	-0.74
12.0	0	0.13	0.19	0.41	0.19	0.13	0	0.89	0.89	0.89	0	-0.89	-0.89	-0.89
14.0	0	0.13	0.19	0.41	0.19	0.13	0	1.03	1.03	1.03	0	-1.03	-1.03	-1.03
16.0	0	0.13	0.19	0.41	0.19	0.13	0	1.18	1.18	1.18	0	-1.18	-1.18	-1.18
18.0	0	0.13	0.19	0.41	0.19	0.13	0	1.33	1.33	1.33	0	-1.33	-1.33	-1.33
20.0	0	0.13	0.19	0.41	0.19	0.13	0	1.48	1.48	1.48	0	-1.48	-1.48	-1.48
	0	0.00	0.00	0.00	0.00	0.00	0	0.00	0.00	0.00	0	0.00	0.00	0.00
20.0	0	0.13	0.19	0.41	0.19	0.13	0	1.48	1.48	1.48	0	-1.48	-1.48	-1.48
22.0	0	0.13	0.19	0.41	0.19	0.13	0	1.63	1.63	1.63	0	-1.63	-1.63	-1.63
24.0	0	0.13	0.19	0.41	0.19	0.13	0	1.77	1.77	1.77	0	-1.77	-1.77	-1.77

26.0	0 0.13	0.19	0.41	0.19	0.13	0	1.92	1.92	1.92	0	-1.92	-1.92	-1.92
28.0	0 0.13	0.19	0.41	0.19	0.13	0	2.07	2.07	2.07	0	-2.07	-2.07	-2.07
30.0	0 0.13	0.19	0.41	0.19	0.13	0	2.22	2.22	2.22	0	-2.22	-2.22	-2.22
32.0	0 0.13	0.19	0.41	0.19	0.13	0	2.36	2.36	2.36	0	-2.36	-2.36	-2.36
34.0	0 0.13	0.19	0.41	0.19	0.13	0	2.51	2.51	2.51	0	-2.51	-2.51	-2.51
36.0	0 0.13	0.19	0.41	0.19	0.13	0	2.66	2.66	2.66	0	-2.66	-2.66	-2.66
38.0	0 0.13	0.19	0.41	0.19	0.13	0	2.81	2.81	2.81	0	-2.81	-2.81	-2.81
40.0	0 0.13	0.19	0.41	0.19	0.13	0	2.96	2.96	2.96	0	-2.96	-2.96	-2.96
	0.00	0.00	0.00	0.00	0.00	0	0.00	0.00	0.00	0	0.00	0.00	0.00
40.0	0 0.13	0.19	0.41	0.19	0.13	0	2.96	2.96	2.96	0	-2.96	-2.96	-2.96
42.0	0 0.13	0.19	0.41	0.19	0.13	0	3.10	3.10	3.10	0	-3.10	-3.10	-3.10
44.0	0 0.13	0.19	0.41	0.19	0.13	0	3.25	3.25	3.25	0	-3.25	-3.25	-3.25
46.0	0 0.13	0.19	0.41	0.19	0.13	0	3.40	3.40	3.40	0	-3.40	-3.40	-3.40
48.0	0 0.13	0.19	0.41	0.19	0.13	0	3.55	3.55	3.55	0	-3.55	-3.55	-3.55
50.0	0 0.13	0.19	0.41	0.19	0.13	0	3.69	3.69	3.69	0	-3.69	-3.69	-3.69
52.0	0 0.13	0.19	0.41	0.19	0.13	0	3.84	3.84	3.84	0	-3.84	-3.84	-3.84
54.0	0 0.13	0.19	0.41	0.19	0.13	0	3.99	3.99	3.99	0	-3.99	-3.99	-3.99
56.0	0 0.13	0.19	0.41	0.19	0.13	0	4.14	4.14	4.14	0	-4.14	-4.14	-4.14
58.0	0 0.13	0.19	0.41	0.19	0.13	0	4.29	4.29	4.29	0	-4.29	-4.29	-4.29
60.0	0 0.13	0.19	0.41	0.19	0.13	0	4.43	4.43	4.43	0	-4.43	-4.43	-4.43
	0.00	0.00	0.00	0.00	0.00	0	0.00	0.00	0.00	0	0.00	0.00	0.00
	She	or Str	200.00	V*O	/ 1*+	-		Nome	al Stra			/ C w	
		al Su	esses.	, V Q	1'I V			NOTIN	ai Sue	55	es, M	/ SX	
"s"=	0 1	2	<u>esses,</u> 3	2'	1'	0'	0	1	2	3	$\frac{\text{es, M}}{2'}$	/ <u>5x</u> 1'	0'
"s"=	0 1	2	3	2'	1'	0'	0	1	2	3	es, M 2'	1'	0'
"s"= Z 60.0	0 1	2 0.19	3 0.41	2' 0.19	0.13	0' 0	0	1 4.43	2 4.43	3 0	es, M 2' -4.43	-4.43	0'
"s"= z 60.0 62.0	0 1 0 0.13 0 0.13	2 0.19 0.19	3 0.41 0.41	2' 0.19 0.19	0.13 0.13	0' 0 0	0 4.43 4.58	1 4.43 4.58	2 4.43 4.58	3 0 0	es, M 2' -4.43 -4.58	-4.43 -4.58	0' -4.43 -4.58
"s"= z 60.0 62.0 64.0	0 1 0 0.13 0 0.13 0 0.13	2 0.19 0.19 0.19	0.41 0.41 0.41	2' 0.19 0.19 0.19	0.13 0.13 0.13	0' 0 0	0 4.43 4.58 4.73	1 4.43 4.58 4.73	<u>2</u> <u>4.43</u> <u>4.58</u> 4.73	3 0 0 0	es, M 2' -4.43 -4.58 -4.73	-4.43 -4.58 -4.73	0' -4.43 -4.58 -4.73
"s"= <u>z</u> 60.0 62.0 64.0 66.0	0 1 0 0.13 0 0.13 0 0.13 0 0.13	2 0.19 0.19 0.19 0.19	3 0.41 0.41 0.41 0.41	2' 0.19 0.19 0.19 0.19	0.13 0.13 0.13 0.13	0' 0 0 0	0 4.43 4.58 4.73 4.88	1 4.43 4.58 4.73 4.88	4.43 4.58 4.73 4.88	3 0 0 0 0	es, M 2' -4.43 -4.58 -4.73 -4.88	-4.43 -4.58 -4.73 -4.88	0' -4.43 -4.58 -4.73 -4.88
"s"= z 60.0 62.0 64.0 66.0 68.0	0 1 0 0.13 0 0.13 0 0.13 0 0.13 0 0.13 0 0.13	2 0.19 0.19 0.19 0.19 0.19	0.41 0.41 0.41 0.41 0.41	2' 0.19 0.19 0.19 0.19 0.19	0.13 0.13 0.13 0.13 0.13 0.13	0' 0 0 0 0	0 4.43 4.58 4.73 4.88 5.02	1 4.43 4.58 4.73 4.88 5.02	4.43 4.58 4.73 4.88 5.02	ss 3 0 0 0 0 0	es, M 2' -4.43 -4.58 -4.73 -4.88 -5.02	-4.43 -4.58 -4.73 -4.88 -5.02	0' -4.43 -4.58 -4.73 -4.88 -5.02
"s"= Z 60.0 62.0 64.0 66.0 68.0 70.0	0 1 0 0.13 0 0.13 0 0.13 0 0.13 0 0.13 0 0.13 0 0.13	0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19	0.41 0.41 0.41 0.41 0.41 0.41 0.41	2' 0.19 0.19 0.19 0.19 0.19 0.19 0.19	0.13 0.13 0.13 0.13 0.13 0.13 0.13	0' 0 0 0 0 0 0 0	0 4.43 4.58 4.73 4.88 5.02 5.17	INORM 1 4.43 4.58 4.73 4.88 5.02 5.17	4.43 4.58 4.73 4.88 5.02 5.17	3 0 0 0 0 0 0 0	es, M 2' -4.43 -4.58 -4.73 -4.88 -5.02 -5.17	-4.43 -4.58 -4.73 -4.88 -5.02 -5.17	0' -4.43 -4.58 -4.73 -4.88 -5.02 -5.17
"s"= z 60.0 62.0 64.0 66.0 68.0 70.0 72.0	0 1 0 0.13 0 0.13 0 0.13 0 0.13 0 0.13 0 0.13 0 0.13 0 0.13	2 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19	0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41	2' 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19	0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13	0' 0 0 0 0 0 0 0 0	0 4.43 4.58 4.73 4.88 5.02 5.17 5.32	Item 1 4.43 4.58 4.73 4.88 5.02 5.17 5.32	4.43 4.43 4.58 4.73 4.88 5.02 5.17 5.32	3 0 0 0 0 0 0 0 0 0 0 0	es, M 2' -4.43 -4.58 -4.73 -4.88 -5.02 -5.17 -5.32	-4.43 -4.58 -4.73 -4.88 -5.02 -5.17 -5.32	0' -4.43 -4.58 -4.73 -4.88 -5.02 -5.17 -5.32
"s"= Z 60.0 62.0 64.0 66.0 68.0 70.0 72.0 74.0	0 1 0 0.13 0 0.13 0 0.13 0 0.13 0 0.13 0 0.13 0 0.13 0 0.13 0 0.13 0 0.13	0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19	$\begin{array}{c} 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ \end{array}$	2' 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19	0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13	0' 0 0 0 0 0 0 0 0 0 0	0 4.43 4.58 4.73 4.88 5.02 5.17 5.32 5.47	Item 1 4.43 4.58 4.73 4.88 5.02 5.17 5.32 5.47	1 3 4.43 4.58 4.73 4.88 5.02 5.17 5.32 5.47	3 0 0 0 0 0 0 0 0 0 0 0 0 0	es, M 2' -4.43 -4.58 -4.73 -4.88 -5.02 -5.17 -5.32 -5.47	-4.43 -4.58 -4.73 -4.88 -5.02 -5.17 -5.32 -5.47	0' -4.43 -4.58 -4.73 -4.88 -5.02 -5.17 -5.32 -5.47
"s"= z 60.0 62.0 64.0 66.0 68.0 70.0 72.0 74.0 76.0	0 1 0 0.13 0 0.13 0 0.13 0 0.13 0 0.13 0 0.13 0 0.13 0 0.13 0 0.13 0 0.13	0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19	$\begin{array}{c} 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ \end{array}$	2' 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19	0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13	0' 0 0 0 0 0 0 0 0 0 0 0 0 0	0 4.43 4.58 4.73 4.88 5.02 5.17 5.32 5.47 5.62	INORM 1 4.43 4.58 4.73 4.88 5.02 5.17 5.32 5.47 5.62	4.43 4.43 4.58 4.73 4.88 5.02 5.17 5.32 5.47 5.62	3 0 <t< td=""><td>es, M 2' -4.43 -4.58 -4.73 -4.88 -5.02 -5.17 -5.32 -5.47 -5.62</td><td>-4.43 -4.58 -4.73 -4.88 -5.02 -5.17 -5.32 -5.47 -5.62</td><td>0' -4.43 -4.58 -4.73 -4.88 -5.02 -5.17 -5.32 -5.47 -5.62</td></t<>	es, M 2' -4.43 -4.58 -4.73 -4.88 -5.02 -5.17 -5.32 -5.47 -5.62	-4.43 -4.58 -4.73 -4.88 -5.02 -5.17 -5.32 -5.47 -5.62	0' -4.43 -4.58 -4.73 -4.88 -5.02 -5.17 -5.32 -5.47 -5.62
"s"= Z 60.0 62.0 64.0 66.0 68.0 70.0 72.0 74.0 76.0 78.0	0 1 0 0.13 0 0.13	0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19	$\begin{array}{c} 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ \end{array}$	2' 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19	0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13	0' 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 4.43 4.58 4.73 4.88 5.02 5.17 5.32 5.47 5.62 5.76	Item 1 4.43 4.58 4.73 4.88 5.02 5.17 5.32 5.47 5.62 5.76	4.43 4.43 4.58 4.73 4.88 5.02 5.17 5.32 5.47 5.62 5.76	3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	es, M 2' -4.43 -4.58 -4.73 -4.88 -5.02 -5.17 -5.32 -5.47 -5.62 -5.76	-4.43 -4.58 -4.73 -4.88 -5.02 -5.17 -5.32 -5.47 -5.62 -5.76	0' -4.43 -4.58 -4.73 -4.88 -5.02 -5.17 -5.32 -5.47 -5.62 -5.76
"s"= Z 60.0 62.0 64.0 66.0 68.0 70.0 72.0 74.0 76.0 78.0 80.0	0 1 0 0.13 0 0.13	0.19 0.19	$\begin{array}{c} 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ \end{array}$	2' 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19	0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13	0' 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 4.43 4.58 4.73 4.88 5.02 5.17 5.32 5.47 5.62 5.76 5.91	Infinition 1 4.43 4.58 4.73 4.88 5.02 5.17 5.32 5.47 5.62 5.76 5.91	a Site 2 4.43 4.58 4.73 4.88 5.02 5.17 5.32 5.47 5.62 5.76 5.91	3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	es, M 2' -4.43 -4.58 -4.73 -4.88 -5.02 -5.17 -5.32 -5.47 -5.62 -5.76 -5.91	-4.43 -4.58 -4.73 -4.88 -5.02 -5.17 -5.32 -5.47 -5.62 -5.76 -5.91	0' -4.43 -4.58 -4.73 -4.88 -5.02 -5.17 -5.32 -5.47 -5.62 -5.76 -5.91
"s"= Z 60.0 62.0 64.0 66.0 68.0 70.0 72.0 74.0 74.0 78.0 80.0	0 1 0 0.13 0 0.13	0.19 0.19	$\begin{array}{c} 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.00\\ \end{array}$	2' 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19	0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13	0' 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 4.43 4.58 4.73 4.88 5.02 5.17 5.32 5.47 5.62 5.76 5.91 0.00	INORITI 1 4.43 4.58 4.73 4.88 5.02 5.17 5.32 5.47 5.62 5.76 5.91 0.00	a1 Site 2 4.43 4.58 4.73 4.88 5.02 5.17 5.32 5.47 5.62 5.76 5.91 0.00	3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	es, M 2' -4.43 -4.58 -4.73 -4.88 -5.02 -5.17 -5.32 -5.17 -5.32 -5.47 -5.62 -5.76 -5.91 0.00	-4.43 -4.58 -4.73 -4.88 -5.02 -5.17 -5.32 -5.47 -5.62 -5.76 -5.91 0.00	0' -4.43 -4.58 -4.73 -4.88 -5.02 -5.17 -5.32 -5.47 -5.62 -5.76 -5.91 0.00
"s"= Z 60.0 62.0 64.0 66.0 68.0 70.0 72.0 74.0 76.0 78.0 80.0 80.0	0 1 0 0.13 0 0.13 0 0.13 0 0.13 0 0.13 0 0.13 0 0.13 0 0.13 0 0.13 0 0.13 0 0.13 0 0.13 0 0.13 0 0.13 0 0.13 0 0.13 0 0.13	0.19 0.19	$\begin{array}{c} 0.41\\$	2' 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19	0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13	0' 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 4.43 4.58 4.73 4.88 5.02 5.17 5.32 5.47 5.62 5.76 5.91 0.00 5.91	Information 1 4.43 4.58 4.73 4.88 5.02 5.17 5.32 5.47 5.62 5.76 5.91 0.00 5.91	a1 Sue 2 4.43 4.58 4.73 4.88 5.02 5.17 5.32 5.47 5.62 5.76 5.91 0.00 5.91	3 0 <td>es, M 2' -4.43 -4.58 -4.73 -4.88 -5.02 -5.17 -5.32 -5.47 -5.62 -5.76 -5.91 0.00 -5.91</td> <td>-4.43 -4.58 -4.73 -4.88 -5.02 -5.17 -5.32 -5.47 -5.62 -5.76 -5.76 -5.91 0.00 -5.91</td> <td>0' -4.43 -4.58 -4.73 -4.88 -5.02 -5.17 -5.32 -5.47 -5.62 -5.76 -5.91 0.00 -5.91</td>	es, M 2' -4.43 -4.58 -4.73 -4.88 -5.02 -5.17 -5.32 -5.47 -5.62 -5.76 -5.91 0.00 -5.91	-4.43 -4.58 -4.73 -4.88 -5.02 -5.17 -5.32 -5.47 -5.62 -5.76 -5.76 -5.91 0.00 -5.91	0' -4.43 -4.58 -4.73 -4.88 -5.02 -5.17 -5.32 -5.47 -5.62 -5.76 -5.91 0.00 -5.91
"s"= z 60.0 62.0 64.0 66.0 68.0 70.0 72.0 74.0 74.0 78.0 80.0 80.0 82.0	0 1 0 0.13 0 0.13 0 0.13 0 0.13 0 0.13 0 0.13 0 0.13 0 0.13 0 0.13 0 0.13 0 0.13 0 0.13 0 0.13 0 0.13 0 0.13 0 0.13 0 0.13 0 0.13	a sub 2 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19	$\begin{array}{c} 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ \end{array}$	2' 0.19	0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13	0' 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 4.43 4.58 4.73 4.88 5.02 5.17 5.32 5.47 5.62 5.76 5.91 0.00 5.91 6.06	Norm 1 4.43 4.58 4.73 4.88 5.02 5.17 5.32 5.47 5.62 5.76 5.91 0.000 5.91 6.06	a1 Sue 2 4.43 4.58 4.73 4.88 5.02 5.17 5.32 5.47 5.62 5.76 5.91 0.000 5.91 6.06	3 0 <td>es, M 2' -4.43 -4.58 -4.73 -4.88 -5.02 -5.17 -5.32 -5.17 -5.32 -5.76 -5.91 0.00 -5.91 -6.06</td> <td>-4.43 -4.58 -4.73 -4.88 -5.02 -5.17 -5.32 -5.47 -5.62 -5.76 -5.91 0.00 -5.91 -6.06</td> <td>0' -4.43 -4.58 -4.73 -4.88 -5.02 -5.17 -5.32 -5.47 -5.62 -5.76 -5.91 0.00 -5.91 -6.06</td>	es, M 2' -4.43 -4.58 -4.73 -4.88 -5.02 -5.17 -5.32 -5.17 -5.32 -5.76 -5.91 0.00 -5.91 -6.06	-4.43 -4.58 -4.73 -4.88 -5.02 -5.17 -5.32 -5.47 -5.62 -5.76 -5.91 0.00 -5.91 -6.06	0' -4.43 -4.58 -4.73 -4.88 -5.02 -5.17 -5.32 -5.47 -5.62 -5.76 -5.91 0.00 -5.91 -6.06
"s"= Z 60.0 62.0 64.0 66.0 70.0 72.0 74.0 74.0 76.0 78.0 80.0 80.0 80.0 82.0 84.0	0 1 0 0.13	2 0.19	$\begin{array}{c} 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ \end{array}$	2' 0.19	0.13 0.13	0' 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 4.43 4.58 4.73 4.88 5.02 5.17 5.32 5.47 5.62 5.76 5.91 0.00 5.91 6.06 6.21	Information 1 4.43 4.58 4.73 4.88 5.02 5.17 5.32 5.47 5.62 5.76 5.91 0.00 5.91 6.06 6.21	a1 Site 2 4.43 4.58 4.73 4.88 5.02 5.17 5.32 5.47 5.62 5.76 5.91 0.00 5.91 6.06 6.21	<u>3</u> 000000000000000000000000000000000000	es, M 2' -4.43 -4.58 -4.73 -4.88 -5.02 -5.17 -5.32 -5.47 -5.62 -5.76 -5.91 0.00 -5.91 -6.06 -6.21	-4.43 -4.58 -4.73 -4.88 -5.02 -5.17 -5.32 -5.47 -5.62 -5.76 -5.91 0.00 -5.91 -6.06 -6.21	0' -4.43 -4.58 -4.73 -4.88 -5.02 -5.17 -5.32 -5.47 -5.62 -5.76 -5.91 0.00 -5.91 -6.06 -6.21
"s"= Z 60.0 62.0 64.0 66.0 70.0 72.0 74.0 74.0 78.0 80.0 80.0 80.0 82.0 84.0 86.0	0 1 0 0.13	a sub 2 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19	$\begin{array}{c} 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ 0.41\\ \end{array}$	2' 0.19	0.13 0.13	0' 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 4.43 4.58 4.73 4.88 5.02 5.17 5.32 5.47 5.62 5.76 5.91 0.00 5.91 6.06 6.21 6.35	Norm 1 4.43 4.58 4.73 4.88 5.02 5.17 5.32 5.47 5.62 5.76 5.91 0.00 5.91 6.06 6.21 6.35	ai sue 2 4.43 4.58 4.73 4.88 5.02 5.17 5.32 5.47 5.62 5.76 5.91 0.00 5.91 6.06 6.21 6.35	3 0	es, M 2' -4.43 -4.58 -4.73 -4.88 -5.02 -5.17 -5.32 -5.47 -5.32 -5.47 -5.62 -5.91 0.00 -5.91 -6.06 -6.21 -6.35	-4.43 -4.58 -4.73 -4.88 -5.02 -5.17 -5.32 -5.47 -5.62 -5.76 -5.91 0.00 -5.91 -6.06 -6.21 -6.35	0' -4.43 -4.58 -4.73 -4.88 -5.02 -5.17 -5.32 -5.47 -5.62 -5.76 -5.91 0.00 -5.91 -6.06 -6.21 -6.35
"s"= z 60.0 62.0 64.0 66.0 68.0 70.0 72.0 74.0 74.0 78.0 80.0 80.0 80.0 82.0 84.0 84.0 88.0	0 1 0 0.13	a sta 2 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19	$\begin{array}{c} 0.41\\$	2' 0.19	0.13 0.13	0' 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 4.43 4.58 4.73 4.88 5.02 5.17 5.32 5.47 5.62 5.76 5.91 0.00 5.91 6.06 6.21 6.35 6.50	Norm 1 4.43 4.58 4.73 4.88 5.02 5.17 5.32 5.47 5.62 5.76 5.91 0.00 5.91 6.06 6.21 6.35 6.50	a1 Site 2 4.43 4.58 4.73 4.88 5.02 5.17 5.32 5.47 5.62 5.76 5.91 0.000 5.91 6.06 6.21 6.35 6.50	SS 3 0	es, M 2' -4.43 -4.58 -4.73 -4.88 -5.02 -5.17 -5.32 -5.47 -5.62 -5.76 -5.91 0.00 -5.91 0.00 -5.91 -6.06 -6.21 -6.35 -6.50	-4.43 -4.58 -4.73 -4.88 -5.02 -5.17 -5.32 -5.47 -5.62 -5.76 -5.91 0.00 -5.91 -6.06 -6.21 -6.35 -6.50	0' -4.43 -4.58 -4.73 -4.88 -5.02 -5.17 -5.32 -5.47 -5.62 -5.76 -5.91 0.00 -5.91 -6.06 -6.21 -6.35 -6.50
"s"= Z 60.0 62.0 64.0 66.0 70.0 72.0 74.0 74.0 76.0 78.0 80.0 80.0 80.0 82.0 84.0 86.0 88.0 90.0	0 1 0 0.13	a sub 2 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19	$\begin{array}{c} 0.41\\$	2' 0.19	0.13 0.13	0' 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{c} 0\\ 4.43\\ 4.58\\ 4.73\\ 4.88\\ 5.02\\ 5.17\\ 5.32\\ 5.47\\ 5.62\\ 5.76\\ 5.91\\ 0.00\\ 5.91\\ 0.00\\ 5.91\\ 6.06\\ 6.21\\ 6.35\\ 6.50\\ 6.65\\ \end{array}$	$ \begin{array}{r} 1 \\ 4.43 \\ 4.58 \\ 4.73 \\ 4.88 \\ 5.02 \\ 5.17 \\ 5.32 \\ 5.47 \\ 5.62 \\ 5.76 \\ 5.91 \\ 0.00 \\ 5.91 \\ 0.00 \\ 5.91 \\ 6.66 \\ 6.21 \\ 6.35 \\ 6.50 \\ 6.65 \\ 6.50 \\ 6.65 \\ $	a1 Sue 2 4.43 4.58 4.73 4.88 5.02 5.17 5.32 5.47 5.62 5.76 5.91 0.000 5.91 6.066 6.211 6.355 6.500 6.65	3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	es, M 2' -4.43 -4.58 -4.73 -4.88 -5.02 -5.17 -5.32 -5.47 -5.62 -5.76 -5.91 0.00 -5.91 -6.06 -6.21 -6.35 -6.50 -6.65	-4.43 -4.58 -4.73 -4.58 -5.02 -5.17 -5.32 -5.47 -5.62 -5.76 -5.91 0.00 -5.91 -6.06 -6.21 -6.35 -6.50 -6.50	0' -4.43 -4.58 -4.73 -4.88 -5.02 -5.17 -5.32 -5.47 -5.62 -5.76 -5.91 0.00 -5.91 -6.06 -6.21 -6.35 -6.50 -6.50
"s"= z 60.0 62.0 64.0 66.0 70.0 72.0 74.0 74.0 78.0 80.0 80.0 80.0 80.0 82.0 84.0 88.0 90.0 92.0	Sile 0 1 0 0.13	a sur 2 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19	$\begin{array}{c} 0.41\\$	2' 0.19	0.13 0.13	0' 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{c} 0\\ 4.43\\ 4.58\\ 4.73\\ 4.88\\ 5.02\\ 5.17\\ 5.32\\ 5.47\\ 5.62\\ 5.76\\ 5.91\\ 0.00\\ 5.91\\ 0.00\\ 5.91\\ 6.06\\ 6.21\\ 6.35\\ 6.50\\ 6.65\\ 6.80\\ \end{array}$	$\begin{array}{c} \text{Norm} \\ 1 \\ \hline \\ 4.43 \\ 4.58 \\ 4.73 \\ 4.88 \\ 5.02 \\ 5.17 \\ 5.32 \\ 5.17 \\ 5.32 \\ 5.47 \\ 5.62 \\ 5.91 \\ 0.00 \\ 5.91 \\ 0.00 \\ 5.91 \\ 0.00 \\ 5.91 \\ 0.66 \\ 6.21 \\ 6.35 \\ 6.50 \\ 6.65 \\ 6.80 \\ \end{array}$	a1 Sue 2 4.43 4.58 4.73 4.88 5.02 5.17 5.32 5.47 5.62 5.76 5.91 0.000 5.91 6.06 6.21 6.35 6.50 6.80	3 0 0 0 0 0 0 0 0 0 0 0 0 0	es, M 2' -4.43 -4.58 -4.73 -4.88 -5.02 -5.17 -5.32 -5.47 -5.52 -5.76 -5.91 0.00 -5.91 0.00 -5.91 -6.06 -6.21 -6.35 -6.50 -6.65 -6.80	-4.43 -4.58 -4.73 -4.88 -5.02 -5.17 -5.32 -5.47 -5.62 -5.76 -5.91 0.00 -5.91 -6.06 -6.21 -6.35 -6.50 -6.65 -6.80	0' -4.43 -4.58 -4.73 -4.88 -5.02 -5.17 -5.32 -5.47 -5.52 -5.76 -5.91 0.00 -5.91 -6.06 -6.21 -6.35 -6.50 -6.65 -6.80
"s"= z 60.0 64.0 64.0 66.0 70.0 72.0 74.0 74.0 76.0 78.0 80.0 80.0 80.0 80.0 80.0 80.0 80.0 90.0 92.0 94.0	Sile 0 1 0 0.13	a sur 2 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19	$\begin{array}{c} 0.41\\$	2' 0.19	0.13 0.13	0' 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{c} 0\\ \hline \\ 4.43\\ 4.58\\ 4.73\\ \hline \\ 4.88\\ 5.02\\ 5.17\\ \hline \\ 5.32\\ 5.47\\ \hline \\ 5.62\\ 5.76\\ \hline \\ 5.91\\ 0.00\\ \hline \\ 5.91\\ 0.00\\ \hline \\ 5.91\\ \hline \\ 0.00\\ \hline 0.00\\ \hline \\ 0.00\\ \hline 0.00\\ $	$\begin{array}{c} \text{Norm} \\ 1 \\ \hline \\ 4.43 \\ 4.58 \\ 4.73 \\ 4.88 \\ 5.02 \\ 5.17 \\ 5.32 \\ 5.47 \\ 5.62 \\ 5.76 \\ 5.91 \\ 0.00 \\ 5.91 \\ 6.06 \\ 6.21 \\ 6.35 \\ 6.50 \\ 6.65 \\ 6.80 \\ 6.95 \\ \end{array}$	al Sue 2 4.43 4.58 4.73 4.88 5.02 5.17 5.32 5.47 5.62 5.76 5.91 0.00 5.91 6.06 6.21 6.35 6.50 6.650 6.80 6.95	3 0 0 0 0 0 0 0 0 0 0 0 0 0	es, M 2' -4.43 -4.58 -4.73 -4.88 -5.02 -5.17 -5.32 -5.47 -5.62 -5.76 -5.91 0.00 -5.91 -6.06 -6.21 -6.35 -6.50 -6.65 -6.80 -6.95	-4.43 -4.58 -4.73 -4.58 -4.73 -4.88 -5.02 -5.17 -5.32 -5.47 -5.62 -5.76 -5.91 0.00 -5.91 -6.06 -6.21 -6.35 -6.50 -6.65 -6.80 -6.95	0' -4.43 -4.58 -4.73 -4.88 -5.02 -5.17 -5.32 -5.47 -5.62 -5.76 -5.91 0.00 -5.91 -6.06 -6.21 -6.35 -6.50 -6.65 -6.80 -6.95

المنسارات المستشارات

96.00													
	0.13	0.19	0.41	0.19	0.13	0	7.09	7.09	7.09	0	-7.09	-7.09	-7.09
98.00	0.13	0.19	0.41	0.19	0.13	0	7.24	7.24	7.24	0	-7.24	-7.24	-7.24
100.00	0.13	0.19	0.41	0.19	0.13	0	7.39	7.39	7.39	0	-7.39	-7.39	-7.39
0	0.00	0.00	0.00	0.00	0.00	0	0.00	0.00	0.00	0	0.00	0.00	0.00
100.00	0.13	0.19	0.41	0.19	0.13	0	7.39	7.39	7.39	0	-7.39	-7.39	-7.39
102.00	0.13	0.19	0.41	0.19	0.13	0	7.54	7.54	7.54	0	-7.54	-7.54	-7.54
104.00	0.13	0.19	0.41	0.19	0.13	0	7.68	7.68	7.68	0	-7.68	-7.68	-7.68
106.00	0.13	0.19	0.41	0.19	0.13	0	7.83	7.83	7.83	0	-7.83	-7.83	-7.83
108.00	0.13	0.19	0.41	0.19	0.13	0	7.98	7.98	7.98	0	-7.98	-7.98	-7.98
110.00	0.13	0.19	0.41	0.19	0.13	0	8.13	8.13	8.13	0	-8.13	-8.13	-8.13
112.00	0.13	0.19	0.41	0.19	0.13	0	8.28	8.28	8.28	0	-8.28	-8.28	-8.28
114.00	0.13	0.19	0.41	0.19	0.13	0	8.42	8.42	8.42	0	-8.42	-8.42	-8.42
116.00	0.13	0.19	0.41	0.19	0.13	0	8.57	8.57	8.57	0	-8.57	-8.57	-8.57
118.00	0.13	0.19	0.41	0.19	0.13	0	8.72	8.72	8.72	0	-8.72	-8.72	-8.72
120.00	0.13	0.19	0.41	0.19	0.13	0	8.87	8.87	8.87	0	-8.87	-8.87	-8.87
				0.00	0.00	0					0.00	0.00	0.00
120.00	-0.50	-0.72	-1.53	-0.72	-0.50	0	8.87	8.87	8.87	0	-8.87	-8.87	-8.87
121.80	-0.50	-0.72	-1.53	-0.72	-0.50	0	8.37	8.37	8.37	0	-8.37	-8.37	-8.37
123.60	-0.50	-0.72	-1.53	-0.72	-0.50	0	7.88	7.88	7.88	0	-7.88	-7.88	-7.88
125.40	-0.50	-0.72	-1.53	-0.72	-0.50	0	7.38	7.38	7.38	0	-7.38	-7.38	-7.38
127.20	-0.50	-0.72	-1.53	-0.72	-0.50	0	6.89	6.89	6.89	0	-6.89	-6.89	-6.89
129.00	-0.50	-0.72	-1.53	-0.72	-0.50	0	6.39	6 39	6 3 9	0	-6 39	-6 39	-6 39
								0.57	0.57	v	0.57	0.57	0.57
130.80	-0.50	-0.72	-1.53	-0.72	-0.50	0	5.90	5.90	5.90	0	-5.90	-5.90	-5.90
130.80	-0.50 Shea	-0.72 ar Str	-1.53 esses,	-0.72 V*Q	-0.50 // I*t	0	5.90	5.90 Norm	5.90 al Stre	0 SS	-5.90 es, M	-5.90 / Sx	-5.90
130.80 "s"=0	-0.50 Shea 1	-0.72 ar Stro 2	-1.53 esses, 3	-0.72 V*Q 2'	-0.50)/ I*t 1'	0 0'	5.90 0	5.90 Norm 1	5.90 al Stre 2	0 55 3	-5.90 bes, M 2'	-5.90 / Sx 1'	-5.90 0'
130.80 "s"=0 z	-0.50 Shea 1	-0.72 ar Stro 2	-1.53 esses, 3	-0.72 V*Q 2'	-0.50)/ I*t 1'	0'	5.90 0	5.90 Norm 1	5.90 al Stre 2	0 55 3	-5.90 es, M 2'	-5.90 / Sx 1'	-5.90 0'
130.80 "s"=0 z 132.60	-0.50 Shea 1 -0.50	-0.72 ar Stro 2 -0.72	-1.53 esses, 3 -1.53	-0.72 V*Q 2' -0.72	-0.50)/ I*t 1' -0.50	0 0' 0	5.90 0 5.40	5.90 Norm 1 5.40	5.90 al Stre 2 5.40	0 55 3 0	-5.90 es, M 2' -5.40	-5.90 / Sx 1' -5.40	-5.90 -5.40
130.80 "s"=0 z 132.60 134.40	-0.50 Shea 1 -0.50 -0.50	-0.72 ar Stro 2 -0.72 -0.72	-1.53 esses, 3 -1.53 -1.53	-0.72 V*Q 2' -0.72 -0.72	-0.50)/ I*t 1' -0.50 -0.50	0 0' 0 0	5.90 0 5.40 4.91	5.90 Norm 1 5.40 4.91	5.90 al Stre 2 5.40 4.91	0 55 3 0 0	-5.90 es, M 2' -5.40 -4.91	-5.90 / Sx 1' -5.40 -4.91	-5.40 -4.91
130.80 "s"=0 z 132.60 134.40 136.20	-0.50 Shea 1 -0.50 -0.50 -0.50	-0.72 ar Stro 2 -0.72 -0.72 -0.72	-1.53 esses, 3 -1.53 -1.53 -1.53	-0.72 V*Q 2' -0.72 -0.72 -0.72	-0.50)/ I*t 1' -0.50 -0.50 -0.50	0 0' 0 0 0	5.90 0 5.40 4.91 4.41	5.90 Norm 1 5.40 4.91 4.41	5.90 al Stre 2 5.40 4.91 4.41	0 SS 3 0 0 0	-5.90 es, M 2' -5.40 -4.91 -4.41	-5.90 / Sx 1' -5.40 -4.91 -4.41	-5.90 -5.40 -4.91 -4.41
130.80 "s"=0 z 132.60 134.40 136.20 138.00	-0.50 Shea -0.50 -0.50 -0.50 -0.50	-0.72 ar Stro 2 -0.72 -0.72 -0.72 -0.72	-1.53 esses, 3 -1.53 -1.53 -1.53 -1.53	-0.72 V*Q 2' -0.72 -0.72 -0.72 -0.72	-0.50)/ I*t 1' -0.50 -0.50 -0.50 -0.50	0 0' 0 0 0 0 0	5.90 0 5.40 4.91 4.41 3.92	5.90 Norm 1 5.40 4.91 4.41 3.92	5.90 al Stre 2 5.40 4.91 4.41 3.92	0 SS 3 0 0 0 0	-5.90 es, M 2' -5.40 -4.91 -4.41 -3.92	-5.90 / Sx 1' -5.40 -4.91 -4.41 -3.92	0:33 -5.90 0' -5.40 -4.91 -4.41 -3.92
130.80 "s"=0 z 132.60 134.40 136.20 138.00	-0.50 She: 1 -0.50 -0.50 -0.50 -0.50	-0.72 ar Stro 2 -0.72 -0.72 -0.72 -0.72	-1.53 esses, 3 -1.53 -1.53 -1.53 -1.53	-0.72 V*Q 2' -0.72 -0.72 -0.72 -0.72 0.00	-0.50 0/ I*t 1' -0.50 -0.50 -0.50 0.00	0 0' 0 0 0 0 0 0	5.90 0 5.40 4.91 4.41 3.92	5.90 Norm 1 5.40 4.91 4.41 3.92	5.90 al Stre 2 5.40 4.91 4.41 3.92	0 SS 0 0 0 0	-5.40 -5.40 -4.91 -4.41 -3.92 0.00	-5.40 -5.40 -4.91 -4.41 -3.92 0.00	-5.90 -5.40 -4.91 -4.41 -3.92 0.00
130.80 "s"=0 z 132.60 134.40 136.20 138.00 138.00	-0.50 Shea -0.50 -0.50 -0.50 -0.50 -0.50	-0.72 ar Stro 2 -0.72 -0.72 -0.72 -0.72 -0.72	-1.53 esses, 3 -1.53 -1.53 -1.53 -1.53 -1.53	-0.72 2' -0.72 -0.72 -0.72 -0.72 -0.72 0.00 -0.72	-0.50)/ I*t 1' -0.50 -0.50 -0.50 0.00 0.00 -0.50	0 0' 0 0 0 0 0 0 0 0	5.90 0 5.40 4.91 4.41 3.92 3.92	5.90 Norm 1 5.40 4.91 4.41 3.92 3.92	5.40 <u>5.40</u> <u>4.41</u> <u>3.92</u>	0 5 5 5 5 5 7 0 0 0 0 0 0 0 0 0 0	-5.40 -5.40 -4.41 -3.92 0.00 -3.92	-5.40 -5.40 -4.91 -4.41 -3.92 0.00 -3.92	-5.40 -5.40 -4.41 -3.92 0.00 -3.92
130.80 "s"=0 z 132.60 134.40 136.20 138.00 138.00 139.80	-0.50 She: 1 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50	-0.72 ar Stra 2 -0.72 -0.72 -0.72 -0.72 -0.72 -0.72 -0.72	-1.53 esses, 3 -1.53 -1.53 -1.53 -1.53 -1.53 -1.53	-0.72 2' -0.72 -0.72 -0.72 -0.72 0.00 -0.72 -0.72 -0.72 -0.72	-0.50)/ I*t 1' -0.50 -0.50 -0.50 0.00 -0.50 -0.50 -0.50	0 0' 0 0 0 0 0 0 0 0 0 0	5.90 0 5.40 4.91 4.41 3.92 3.92 3.92 3.43	5.90 Norm 1 5.40 4.91 4.41 3.92 3.92 3.43	5.90 al Stre 2 5.40 4.91 4.41 3.92 3.92 3.43	0 SS 3 0 0 0 0 0 0 0 0 0 0 0 0 0	-5.90 es, M 2' -5.40 -4.91 -4.41 -3.92 0.00 -3.92 -3.43	-5.40 -5.40 -4.91 -4.41 -3.92 0.00 -3.92 -3.43	0:33 -5.90 -5.40 -4.91 -4.41 -3.92 0.00 -3.92 -3.43
130.80 "s"=0 z 132.60 134.40 136.20 138.00 138.00 139.80 141.60	-0.50 Shei -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50	-0.72 ar Stro 2 -0.72 -0.72 -0.72 -0.72 -0.72 -0.72 -0.72 -0.72	-1.53 esses, 3 -1.53 -1.53 -1.53 -1.53 -1.53 -1.53 -1.53	-0.72 2' -0.72 -0.72 -0.72 -0.72 -0.72 0.00 -0.72 -0.72 -0.72 -0.72	-0.50)/ I*t 1' -0.50 -0.50 -0.50 -0.50 0.00 -0.50 -0.50 -0.50	0 0' 0 0 0 0 0 0 0 0 0 0 0	5.90 0 5.40 4.91 4.41 3.92 3.92 3.43 2.93	5.90 Norm 1 5.40 4.91 4.41 3.92 3.92 3.92 3.43 2.93	5.40 4.91 4.41 3.92 3.92 3.43 2.93	0 5 5 5 5 5 5 5 5 5 5 5 5 5	-5.40 -5.40 -4.91 -4.41 -3.92 0.00 -3.92 -3.43 -2.93	-5.40 -5.40 -4.91 -4.41 -3.92 0.00 -3.92 -3.43 -2.93	-5.40 -5.40 -4.91 -4.41 -3.92 0.00 -3.92 -3.43 -2.93
130.80 "s"=0 z 132.60 134.40 136.20 138.00 138.00 139.80 141.60 143.40	-0.50 Shea -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50	-0.72 ar Stro 2 -0.72 -0.72 -0.72 -0.72 -0.72 -0.72 -0.72 -0.72 -0.72	-1.53 esses, 3 -1.53 -1.53 -1.53 -1.53 -1.53 -1.53 -1.53 -1.53	-0.72 2' -0.72 -0.72 -0.72 -0.72 -0.72 0.00 -0.72 -0.72 -0.72 -0.72 -0.72	-0.50 2/ I*t 1' -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50	0 0' 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5.90 0 5.40 4.91 4.41 3.92 3.92 3.92 3.43 2.93 2.44	5.90 Norm 1 5.40 4.91 4.41 3.92 3.92 3.43 2.93 2.44	5.90 al Stre 2 5.40 4.91 4.41 3.92 3.43 2.93 2.44	0 ss 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-5.90 es, M 2' -5.40 -4.91 -4.41 -3.92 0.00 -3.92 -3.43 -2.93 -2.44	-5.40 -5.40 -4.91 -4.41 -3.92 0.00 -3.92 -3.43 -2.93 -2.44	-5.40 -5.40 -4.91 -4.41 -3.92 0.00 -3.92 -3.43 -2.93 -2.44
$ \begin{array}{c} 130.80\\ \hline "s"=0\\ \hline z\\ 132.60\\ 134.40\\ \hline 136.20\\ \hline 138.00\\ \hline 138.00\\ \hline 139.80\\ \hline 141.60\\ \hline 143.40\\ \hline 145.20\\ \hline \end{array} $	-0.50 She: 1 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50	-0.72 ar Stra 2 -0.72 -0.72 -0.72 -0.72 -0.72 -0.72 -0.72 -0.72 -0.72 -0.72	-1.53 esses, 3 -1.53 -1.53 -1.53 -1.53 -1.53 -1.53 -1.53 -1.53 -1.53	-0.72 -0.72 -0.72 -0.72 -0.72 -0.72 -0.72 -0.72 -0.72 -0.72 -0.72 -0.72 -0.72 -0.72 -0.72	-0.50)/ I*t 1' -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5.90 0 5.40 4.91 4.41 3.92 3.92 3.43 2.93 2.44 1.94	5.40 4.91 4.41 3.92 3.92 3.43 2.93 2.44 1.94	5.40 <u>5.40</u> <u>4.91</u> <u>4.41</u> <u>3.92</u> <u>3.92</u> <u>3.43</u> <u>2.93</u> <u>2.44</u> <u>1.94</u>	0 ss 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-5.40 -5.40 -4.91 -4.41 -3.92 0.00 -3.92 -3.43 -2.93 -2.44 -1.94	-5.40 -5.40 -4.91 -4.41 -3.92 0.00 -3.92 -3.43 -2.93 -2.44 -1.94	-5.40 -5.40 -4.91 -4.41 -3.92 0.00 -3.92 -3.43 -2.93 -2.44 -1.94
130.80 "s"=0 z 132.60 134.40 136.20 138.00 138.00 139.80 141.60 143.40 145.20 147.00	-0.50 Shea -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50	-0.72 ar Stro 2 -0.72 -0.72 -0.72 -0.72 -0.72 -0.72 -0.72 -0.72 -0.72 -0.72 -0.72 -0.72	-1.53 esses, 3 -1.53 -1.53 -1.53 -1.53 -1.53 -1.53 -1.53 -1.53 -1.53 -1.53	-0.72 2' -0.72 -0.72 -0.72 -0.72 -0.72 -0.72 -0.72 -0.72 -0.72 -0.72 -0.72 -0.72 -0.72	-0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5.90 0 5.40 4.91 4.41 3.92 3.92 3.43 2.93 2.44 1.94 1.45	5.90 Norm 1 5.40 4.91 4.41 3.92 3.43 2.93 2.44 1.94 1.45	5.90 al Stre 2 5.40 4.91 4.41 3.92 3.43 2.93 2.44 1.94	0 ss 3 0000 000000000000000000000000000	-5.90 es, M 2' -5.40 -4.91 -4.41 -3.92 0.00 -3.92 -3.43 -2.93 -2.44 -1.94 -1.45	-5.40 -5.40 -4.91 -4.41 -3.92 0.00 -3.92 -3.43 -2.93 -2.44 -1.94 -1.45	-5.40 -5.40 -4.91 -4.41 -3.92 0.00 -3.92 -3.43 -2.93 -2.44 -1.94 -1.45
130.80 "s"=0 z 132.60 134.40 136.20 138.00 138.00 139.80 141.60 143.40 145.20 147.00 148.80	-0.50 She: 1 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50	-0.72 ar Stra 2 -0.72 -0.72 -0.72 -0.72 -0.72 -0.72 -0.72 -0.72 -0.72 -0.72 -0.72 -0.72 -0.72	-1.53 esses, 3 -1.53 -1.53 -1.53 -1.53 -1.53 -1.53 -1.53 -1.53 -1.53 -1.53 -1.53	-0.72 2' -0.72 -0.72 -0.72 -0.72 -0.72 -0.72 -0.72 -0.72 -0.72 -0.72 -0.72 -0.72 -0.72 -0.72 -0.72	-0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50	0' 0' 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5.90 0 5.40 4.91 4.41 3.92 3.92 3.43 2.93 2.44 1.94 1.45 0.95	5.90 Norm 1 5.40 4.91 4.41 3.92 3.43 2.93 2.44 1.94 1.45 0.95	5.90 al Stre 2 5.40 4.91 4.41 3.92 3.43 2.93 2.44 1.94 1.45 0.95	0 ss 3 00000 00000000000	-5.90 es, M -5.40 -4.91 -4.41 -3.92 0.00 -3.92 -3.43 -2.44 -1.94 -1.45 -0.95	-5.90 / Sx 1' -5.40 -4.91 -4.41 -3.92 0.00 -3.92 -3.43 -2.93 -2.44 -1.45 -0.95	-5.40 -5.40 -4.91 -4.41 -3.92 0.00 -3.92 -3.43 -2.44 -1.45 -0.95
130.80 "s"=0 z 132.60 134.40 136.20 138.00 138.00 139.80 141.60 143.40 145.20 147.00 148.80 150.60	-0.50 Shei 1 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50	-0.72 ar Stra 2 -0.72 -0.72 -0.72 -0.72 -0.72 -0.72 -0.72 -0.72 -0.72 -0.72 -0.72 -0.72 -0.72 -0.72 -0.72 -0.72	-1.53 esses, 3 -1.53 -1.53 -1.53 -1.53 -1.53 -1.53 -1.53 -1.53 -1.53 -1.53 -1.53 -1.53	-0.72 -0.72	-0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5.90 0 5.40 4.91 4.41 3.92 3.92 3.43 2.93 2.44 1.94 1.45 0.95 0.46	5.90 Norm 1 5.40 4.91 4.41 3.92 3.92 3.43 2.93 2.44 1.94 1.45 0.95 0.46	5.90 al Stre 2 5.40 4.91 4.41 3.92 3.43 2.93 2.44 1.94 1.45 0.95		-5.40 -5.40 -4.91 -4.41 -3.92 0.00 -3.92 -3.43 -2.93 -2.44 -1.94 -1.94 -1.45 -0.95 -0.46	-5.40 -5.40 -4.91 -4.41 -3.92 0.00 -3.92 -3.43 -2.93 -2.44 -1.94 -1.45 -0.95 -0.46	-5.40 -5.40 -4.91 -4.41 -3.92 0.00 -3.92 -3.43 -2.93 -2.44 -1.94 -1.45 -0.95 -0.46
130.80 "s"=0 z 132.60 134.40 136.20 138.00 138.00 138.00 141.60 143.40 145.20 147.00 147.00 148.80 150.60 152.40	-0.50 She: 1 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50	-0.72 ar Stra 2 -0.72 -0.72 -0.72 -0.72 -0.72 -0.72 -0.72 -0.72 -0.72 -0.72 -0.72 -0.72 -0.72 -0.72 -0.72 -0.72	-1.53 esses, 3 -1.53 -1.53 -1.53 -1.53 -1.53 -1.53 -1.53 -1.53 -1.53 -1.53 -1.53 -1.53 -1.53 -1.53	-0.72 -0.72	-0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5.90 0 5.40 4.91 4.41 3.92 3.92 3.92 3.43 2.93 2.44 1.94 1.45 0.95 0.46 -0.04	5.90 Norm 1 5.40 4.91 4.41 3.92 3.92 3.43 2.93 2.44 1.94 1.45 0.95 0.46 -0.04	5.90 al Stre 2 5.40 4.91 4.41 3.92 3.43 2.93 2.44 1.94 1.45 0.95 0.466		-5.90 es, M 2' -5.40 -4.91 -4.41 -3.92 0.00 -3.92 -3.43 -2.93 -2.44 -1.45 -0.95 -0.46 0.04	-5.90 / Sx 1' -5.40 -4.91 -4.41 -3.92 0.00 -3.92 -3.43 -2.93 -2.44 -1.45 -0.95 -0.46 0.04	0.33 -5.90 -5.40 -4.91 -4.41 -3.92 0.00 -3.92 -3.43 -2.93 -2.44 -1.45 -0.95 -0.46 0.04
130.80 "s"=0 z 132.60 134.40 136.20 138.00 139.80 141.60 143.40 145.20 147.00 148.80 150.60 152.40 154.20	-0.50 She: 1 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50	-0.72 ar Stra 2 -0.72 -0.72 -0.72 -0.72 -0.72 -0.72 -0.72 -0.72 -0.72 -0.72 -0.72 -0.72 -0.72 -0.72 -0.72 -0.72 -0.72 -0.72	-1.53 esses, 3 -1.53 -1.53 -1.53 -1.53 -1.53 -1.53 -1.53 -1.53 -1.53 -1.53 -1.53 -1.53 -1.53 -1.53 -1.53	-0.72 -0	-0.50 -0	0 0' 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5.90 0 5.40 4.91 4.41 3.92 3.92 3.43 2.93 2.44 1.94 1.45 0.95 0.46 -0.04 -0.53	5.90 Norm 1 5.40 4.91 4.41 3.92 3.43 2.93 2.44 1.94 1.45 0.95 0.46 -0.04 -0.53	5.90 al Stre 2 5.40 4.91 4.41 3.92 3.92 3.43 2.93 2.44 1.94 1.45 0.95 0.46 -0.04 -0.53		$\begin{array}{c} -5.90\\ \text{es, M}\\ 2'\\ -5.40\\ -4.91\\ -4.41\\ -3.92\\ 0.00\\ -3.92\\ -3.43\\ -2.93\\ -2.44\\ -1.94\\ -1.94\\ -1.45\\ -0.95\\ -0.46\\ 0.04\\ 0.53\end{array}$	-5.90 / Sx 1' -5.40 -4.91 -4.41 -3.92 0.00 -3.92 -3.43 -2.93 -2.44 -1.94 -1.94 -1.45 -0.95 -0.46 0.04 0.53	-5.40 -5.40 -4.41 -3.92 0.00 -3.92 -3.43 -2.93 -2.44 -1.94 -1.94 -1.94 -0.95 -0.46 0.04 0.53
130.80 "s"=0 z 132.60 134.40 136.20 138.00 138.00 138.00 139.80 141.60 143.40 145.20 147.00 147.00 147.00 147.00 152.40 150.60	-0.50 Shei 1 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50	-0.72 ar Stro 2 -0.72	-1.53 esses, 3 -1.53 -1.53 -1.53 -1.53 -1.53 -1.53 -1.53 -1.53 -1.53 -1.53 -1.53 -1.53 -1.53 -1.53 -1.53 -1.53 -1.53	-0.72 -0.72	-0.50 -	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5.90 0 5.40 4.91 4.41 3.92 3.92 3.43 2.93 2.44 1.94 1.45 0.95 0.46 -0.04 -0.53 -1.03	5.90 Norm 1 5.40 4.91 4.41 3.92 3.43 2.93 2.44 1.45 0.95 0.46 -0.04 -0.53 -1.03	5.90 3.92 3.92 3.92 3.43 2.93 2.44 1.94 1.45 0.95 0.46 -0.04 -0.53		$\begin{array}{c} -5.90\\ \text{es, M}\\ 2'\\ -5.40\\ -4.91\\ -4.41\\ -3.92\\ 0.00\\ -3.92\\ -3.43\\ -2.93\\ -2.44\\ -1.45\\ -0.95\\ -0.46\\ 0.04\\ 0.53\\ 1.03\\ \end{array}$	-5.90 / Sx 1' -5.40 -4.91 -4.41 -3.92 0.00 -3.92 -3.43 -2.93 -2.44 -1.45 -0.95 -0.46 0.04 0.53 1.03	$\begin{array}{c} 0.53\\ -5.90\\ \hline 0'\\ \hline -5.40\\ -4.91\\ -4.41\\ -3.92\\ \hline 0.00\\ -3.92\\ -3.43\\ -2.93\\ -2.93\\ -2.44\\ -1.45\\ -0.95\\ -0.46\\ \hline 0.04\\ \hline 0.53\\ 1.03\\ \hline \end{array}$
130.80 "s"=0 z 132.60 134.40 136.20 138.00 138.00 139.80 141.60 143.40 145.20 147.00 148.80 150.60 152.40 156.00	-0.50 She: 1 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50 -0.50	-0.72 ar Stra 2 -0.72 -0.72 -0.72 -0.72 -0.72 -0.72 -0.72 -0.72 -0.72 -0.72 -0.72 -0.72 -0.72 -0.72 -0.72 -0.72 -0.72 -0.72	-1.53 esses, 3 -1.53 -1.53 -1.53 -1.53 -1.53 -1.53 -1.53 -1.53 -1.53 -1.53 -1.53 -1.53 -1.53 -1.53 -1.53 -1.53	-0.72 2' -0.72	-0.50 -	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5.90 0 5.40 4.91 4.41 3.92 3.92 3.43 2.93 2.44 1.94 1.45 0.95 0.46 -0.04 -0.53 -1.03	5.90 Norm 1 5.40 4.91 4.41 3.92 3.93 2.44 1.94 1.45 0.95 0.46 -0.04 -0.53 -1.03	5.90 al Stre 2 5.40 4.91 4.41 3.92 3.43 2.93 2.44 1.94 1.45 0.95 0.46 -0.03 -1.03		-5.90 es, M 2' -5.40 -4.91 -4.41 -3.92 0.00 -3.92 -3.43 -2.93 -2.44 -1.45 -0.95 -0.46 0.04 0.53 1.03 0.00	-5.90 / Sx 1' -5.40 -4.91 -4.41 -3.92 0.00 -3.92 -3.43 -2.93 -2.44 -1.45 -0.95 -0.46 0.04 0.53 1.03 0.00	-5.40 -5.40 -4.91 -4.41 -3.92 0.00 -3.92 -3.43 -2.44 -1.45 -0.95 -0.46 0.04 0.53 1.03 0.00

157.80	-0.50	-0.72	-1.53	-0.72	-0.500	-1.52	-1.52	-1.52	0 1.52	1.52	1.52
159.60	-0.50	-0.72	-1.53	-0.72	-0.500	-2.02	-2.02	-2.02	0 2.02	2.02	2.02
161.40	-0.50	-0.72	-1.53	-0.72	-0.500	-2.51	-2.51	-2.51	0 2.51	2.51	2.51
163.20	-0.50	-0.72	-1.53	-0.72	-0.500	-3.01	-3.01	-3.01	0 3.01	3.01	3.01
165.00	-0.50	-0.72	-1.53	-0.72	-0.500	-3.50	-3.50	-3.50	0 3.50	3.50	3.50
166.80	-0.50	-0.72	-1.53	-0.72	-0.500	-3.99	-3.99	-3.99	0 3.99	3.99	3.99
168.60	-0.50	-0.72	-1.53	-0.72	-0.500	-4.49	-4.49	-4.49	0 4.49	4.49	4.49
170.40	-0.50	-0.72	-1.53	-0.72	-0.500	-4.98	-4.98	-4.98	0 4.98	4.98	4.98
172.20	-0.50	-0.72	-1.53	-0.72	-0.500	-5.48	-5.48	-5.48	0 5.48	5.48	5.48
174.00	-0.50	-0.72	-1.53	-0.72	-0.500	-5.97	-5.97	-5.97	0 5.97	5.97	5.97
				0.00	0.000				0.00	0.00	0.00
174.00	-0.50	-0.72	-1.53	-0.72	-0.500	-5.97	-5.97	-5.97	0 5.97	5.97	5.97
175.80	-0.50	-0.72	-1.53	-0.72	-0.500	-6.47	-6.47	-6.47	0 6.47	6.47	6.47
177.60	-0.50	-0.72	-1.53	-0.72	-0.500	-6.96	-6.96	-6.96	0 6.96	6.96	6.96
179.40	-0.50	-0.72	-1.53	-0.72	-0.500	-7.46	-7.46	-7.46	0 7.46	7.46	7.46
181.20	-0.50	-0.72	-1.53	-0.72	-0.500	-7.95	-7.95	-7.95	0 7.95	7.95	7.95
183.00	-0.50	-0.72	-1.53	-0.72	-0.500	-8.45	-8.45	-8.45	0 8.45	8.45	8.45
184.80	-0.50	-0.72	-1.53	-0.72	-0.500	-8.94	-8.94	-8.94	0 8.94	8.94	8.94
186 60	-0.50	-0.72	-1.53	-0 72	-0.500	-9 44	-9 44	-9 44	0 9 44	9 4 4	9 4 4
188.40	-0.50	-0.72	-1.53	-0.72	-0.500	-9 93	-9.93	-9.93	0 9 93	993	993
190.20	-0.50	-0.72	-1.53	-0.72	-0.500	-10.43	-10.43	-10.43	01043	10.43	10.43
192.00	-0.50	-0.72	-1.53	-0.72	-0.500	-10.92	-10 92	-10 92	010 92	10.92	10.92
				0.00	0.000				0.00	0.00	0.00
192.00	0.17	0.25	0.53	0.25	0.170	-10.92	-10.92	-10.92	010.92	10.92	10.92
194.10	0.17	0.25	0.53	0.25	0.170	-10.72	-10.72	-10.72	010.72	10.72	10.72
	She	ar Str	esses.	V*Q)/ I*t		Norm	al Stre	sses, M	/ Sx	
"s"=0	1	2	3	2'	1' 0'	0	1	2	3 2'	1'	0'
Ζ											
196.20	0.17	0.25	0.53	0.25	0.170	-10.52	-10.52	-10.52	010.52	10.52	10.52
198.30	0.17	0.25	0.53	0.25	0.170	-10.32	-10.32	-10.32	010.32	10.32	10.32
200.40	0.17	0.25	0.53	0.25	0.170	-10.12	-10.12	-10.12	010.12	10.12	10.12
202.50	0.17	0.25	0.53	0.25	0.170	-9.92	-9.92	-9.92	0 9.92	9.92	9.92
204.60	0.17	0.25	0.53	0.25	0.170	-9.72	-9.72	-9.72	0 9.72	9.72	9.72
206.70	0.17	0.25	0.53	0.25	0.170	-9.52	-9.52	-9.52	0 9.52	9.52	9.52
208.80	0.17	0.25	0.53	0.25	0.170	-9.31	-9.31	-9.31	0 9.31	9.31	9.31
210.90	0.17	0.25	0.53	0.25	0.170	-9.11	-9.11	-9.11	0 9.11	9.11	9.11
213.00	0.17	0.25	0.53	0.25	0.170	-8.91	-8.91	-8.91	0 8.91	8.91	8.91
0	0.00	0.00	0.00	0.00	0.000	0.00	0.00	0.00	0.00	0.00	0.00
213.00	0.17	0.25	0.53	0.25	0.170	-8.91	-8.91	-8.91	0 8.91	8.91	8.91
215.10	0.17	0.25	0.53	0.25	0.170	-8.71	-8.71	-8.71	0 8.71	8.71	8.71
217.20	0.17	0.25	0.53	0.25	0.170	-8.51	-8.51	-8.51	0 8.51	8.51	8.51
219.30	0.17	0.25	0.53	0.25	0.170	-8.31	-8.31	-8.31	0 8.31	8.31	8.31
221.40	0.17	0.25	0.53	0.25	0.170	-8.11	-8.11	-8.11	0 8.11	8.11	8.11
222 50	0.17	0.25	0.53	0.25	0.170	-7.91	-7.91	-7.91	0 7.91	7.91	7.91
223.30											

225.60	0.17	0.25	0.53	0.25	0.17	0	-7.71	-7.71	-7.71) 7.71	7.71	7.71
227.70	0.17	0.25	0.53	0.25	0.17	0	-7.51	-7.51	-7.51) 7.51	7.51	7.51
229.80	0.17	0.25	0.53	0.25	0.17	0	-7.31	-7.31	-7.31	7.31	7.31	7.31
231.90	0.17	0.25	0.53	0.25	0.17	0	-7.11	-7.11	-7.11) 7.11	7.11	7.11
234.00	0.17	0.25	0.53	0.25	0.17	0	-6.91	-6.91	-6.91) 6.91	6.91	6.91
0	0.00	0.00	0.00	0.00	0.00	0	0.00	0.00	0.00	0.00	0.00	0.00
234.00	0.17	0.25	0.53	0.25	0.17	0	-6.91	-6.91	-6.91	6.91	6.91	6.91
236.10	0.17	0.25	0.53	0.25	0.17	0	-6.71	-6.71	-6.71	0 6.71	6.71	6.71
238.20	0.17	0.25	0.53	0.25	0.17	0	-6.51	-6.51	-6.51	0 6.51	6.51	6.51
240.30	0.17	0.25	0.53	0.25	0.17	0	-6.30	-6.30	-6.30	6.30	6.30	6.30
242.40	0.17	0.25	0.53	0.25	0.17	0	-6.10	-6.10	-6.10	0 6.10	6.10	6.10
244.50	0.17	0.25	0.53	0.25	0.17	0	-5.90	-5.90	-5.90	5.90	5.90	5.90
246.60	0.17	0.25	0.53	0.25	0.17	0	-5.70	-5.70	-5.70) 5.70	5.70	5.70
248.70	0.17	0.25	0.53	0.25	0.17	0	-5.50	-5.50	-5.50	5.50	5.50	5.50
250.80	0.17	0.25	0.53	0.25	0.17	0	-5.30	-5.30	-5.30	5.30	5.30	5.30
252.90	0.17	0.25	0.53	0.25	0.17	0	-5.10	-5.10	-5.10	5.10	5.10	5.10
255.00	0.17	0.25	0.53	0.25	0.17	0	-4.90	-4.90	-4.90) 4.90	4.90	4.90
0	0.00	0.00	0.00	0.00	0.00	0	0.00	0.00	0.00	0.00	0.00	0.00
255.00	0.17	0.25	0.53	0.25	0.17	0	-4.90	-4.90	-4.90) 4.90	4.90	4.90
257.10	0.17	0.25	0.53	0.25	0.17	0	-4.70	-4.70	-4.70	0 4.70	4.70	4.70
259.20	0.17	0.25	0.53	0.25	0.17	0	-4.50	-4.50	-4.50) 4.50	4.50	4.50
261.30	0.17	0.25	0.53	0.25	0.17	0	-4.30	-4.30	-4.30) 4.30	4.30	4.30
263.40	0.17	0.25	0.53	0.25	0.17	0	-4.10	-4.10	-4.10) 4.10	4.10	4.10
265.50	0.17	0.25	0.53	0.25	0.17	0	-3.90	-3.90	-3.90) 3.90	3.90	3.90
267.60	0.17	0.25	0.53	0.25	0.17	0	-3.70	-3.70	-3.70	3.70	3.70	3.70
269.70	0.17	0.25	0.53	0.25	0.17	0	-3.50	-3.50	-3.50	3.50	3.50	3.50
271.80	0.17	0.25	0.53	0.25	0.17	0	-3.29	-3.29	-3.29) 3.29	3.29	3.29
0	1	2	3	2'	1'	0'	0	1	2	3 2'	1'	0'
Z												
273.90	0.17	0.25	0.53	0.25	0.17	0	-3.09	-3.09	-3.09	3.09	3.09	3.09
276.00	0.17	0.25	0.53	0.25	0.17	0	-2.89	-2.89	-2.89) 2.89	2.89	2.89
0	0.00	0.00	0.00	0.00	0.00	0	0.00	0.00	0.00	0.00	0.00	0.00
276.00	0.17	0.25	0.53	0.25	0.17	0	-2.89	-2.89	-2.89) 2.89	2.89	2.89
278.10	0.17	0.25	0.53	0.25	0.17	0	-2.69	-2.69	-2.69) 2.69	2.69	2.69
280.20	0.17	0.25	0.53	0.25	0.17	0	-2.49	-2.49	-2.49) 2.49	2.49	2.49
282.30	0.17	0.25	0.53	0.25	0.17	0	-2.29	-2.29	-2.29) 2.29	2.29	2.29
284.40	0.17	0.25	0.53	0.25	0.17	0	-2.09	-2.09	-2.09) 2.09	2.09	2.09
286.50	0.17	0.25	0.53	0.25	0.17	0	-1.89	-1.89	-1.89) 1.89	1.89	1.89
288.60	0.17	0.25	0.53	0.25	0.17	0	-1.69	-1.69	-1.69	1.69	1.69	1.69
290.70	0.17	0.25	0.53	0.25	0.17	0	-1.49	-1.49	-1.49	1.49	1.49	1.49
292.80	0.17	0.25	0.53	0.25	0.17	0	-1.29	-1.29	-1.29) 1.29	1.29	1.29
294.90	0.17	0.25	0.53	0.25	0.17	0	-1.09	-1.09	-1.09) 1.09	1.09	1.09
297.00	0.17	0.25	0.53	0.25	0.17	0	-0.89	-0.89	-0.89	0.89	0.89	0.89
0	0.00	0.00	0.00	0.00	0.00	0	0.00	0.00	0.00	0.00	0.00	0.00
						_						

297.00	0.17	0.25	0.53	0.25	0.17	0	-0.89	-0.89	-0.89	0	0.89	0.89	0.89
299.10	0.17	0.25	0.53	0.25	0.17	0	-0.69	-0.69	-0.69	0	0.69	0.69	0.69
301.20	0.17	0.25	0.53	0.25	0.17	0	-0.49	-0.49	-0.49	0	0.49	0.49	0.49
303.30	0.17	0.25	0.53	0.25	0.17	0	-0.28	-0.28	-0.28	0	0.28	0.28	0.28
305.40	0.17	0.25	0.53	0.25	0.17	0	-0.08	-0.08	-0.08	0	0.08	0.08	0.08
307.50	0.17	0.25	0.53	0.25	0.17	0	0.12	0.12	0.12	0	-0.12	-0.12	-0.12
309.60	0.17	0.25	0.53	0.25	0.17	0	0.32	0.32	0.32	0	-0.32	-0.32	-0.32
311.70	0.17	0.25	0.53	0.25	0.17	0	0.52	0.52	0.52	0	-0.52	-0.52	-0.52
313.80	0.17	0.25	0.53	0.25	0.17	0	0.72	0.72	0.72	0	-0.72	-0.72	-0.72
315.90	0.17	0.25	0.53	0.25	0.17	0	0.92	0.92	0.92	0	-0.92	-0.92	-0.92
318.00	0.17	0.25	0.53	0.25	0.17	0	1.12	1.12	1.12	0	-1.12	-1.12	-1.12
0	0.00	0.00	0.00	0.00	0.00	0	0.00	0.00	0.00	0	0.00	0.00	0.00
318.00	0.17	0.25	0.53	0.25	0.17	0	1.12	1.12	1.12	0	-1.12	-1.12	-1.12
320.10	0.17	0.25	0.53	0.25	0.17	0	1.32	1.32	1.32	0	-1.32	-1.32	-1.32
322.20	0.17	0.25	0.53	0.25	0.17	0	1.52	1.52	1.52	0	-1.52	-1.52	-1.52
324.30	0.17	0.25	0.53	0.25	0.17	0	1.72	1.72	1.72	0	-1.72	-1.72	-1.72
326.40	0.17	0.25	0.53	0.25	0.17	0	1.92	1.92	1.92	0	-1.92	-1.92	-1.92
328.50	0.17	0.25	0.53	0.25	0.17	0	2.12	2.12	2.12	0	-2.12	-2.12	-2.12
330.60	0.17	0.25	0.53	0.25	0.17	0	2.32	2.32	2.32	0	-2.32	-2.32	-2.32
332.70	0.17	0.25	0.53	0.25	0.17	0	2.52	2.52	2.52	0	-2.52	-2.52	-2.52
334.80	0.17	0.25	0.53	0.25	0.17	0	2.73	2.73	2.73	0	-2.73	-2.73	-2.73
336.90	0.17	0.25	0.53	0.25	0.17	0	2.93	2.93	2.93	0	-2.93	-2.93	-2.93
339.00	0.17	0.25	0.53	0.25	0.17	0	3.13	3.13	3.13	0	-3.13	-3.13	-3.13
0	0.00	0.00	0.00	0.00	0.00	0	0.00	0.00	0.00	0	0.00	0.00	0.00
339.00	0.17	0.25	0.53	0.25	0.17	0	3.13	3.13	3.13	0	-3.13	-3.13	-3.13
341.10	0.17	0.25	0.53	0.25	0.17	0	3.33	3.33	3.33	0	-3.33	-3.33	-3.33
343.20	0.17	0.25	0.53	0.25	0.17	0	3.53	3.53	3.53	0	-3.53	-3.53	-3.53
345.30	0.17	0.25	0.53	0.25	0.17	0	3.73	3.73	3.73	0	-3.73	-3.73	-3.73
347.40	0.17	0.25	0.53	0.25	0.17	0	3.93	3.93	3.93	0	-3.93	-3.93	-3.93
0	1	2	3	2'	1'	0'	0	1	2	3	2'	1'	0'
349.50	0.17	0.25	0.53	0.25	0.17	0	4.13	4.13	4.13	0	-4.13	-4.13	-4.13
351.60	0.17	0.25	0.53	0.25	0.17	0	4.33	4.33	4.33	0	-4.33	-4.33	-4.33
353.70	0.17	0.25	0.53	0.25	0.17	0	4.53	4.53	4.53	0	-4.53	-4.53	-4.53
355.80	0.17	0.25	0.53	0.25	0.17	0	4.73	4.73	4.73	0	-4.73	-4.73	-4.73
357.90	0.17	0.25	0.53	0.25	0.17	0	4.93	4.93	4.93	0	-4.93	-4.93	-4.93
360.00	0.17	0.25	0.53	0.25	0.17	0	5.13	5.13	5.13	0	-5.13	-5.13	-5.13
				0.00	0.00	0					0.00	0.00	0.00
360.00	-0.08	-0.11	-0.24	-0.11	-0.08	0	5.13	5.13	5.13	0	-5.13	-5.13	-5.13
362.00	-0.08	-0.11	-0.24	-0.11	-0.08	0	5.05	5.05	5.05	0	-5.05	-5.05	-5.05
364.00	-0.08	-0.11	-0.24	-0.11	-0.08	0	4.96	4.96	4.96	0	-4.96	-4.96	-4.96
366.00	-0.08	-0.11	-0.24	-0.11	-0.08	0	4.88	4.88	4.88	0	-4.88	-4.88	-4.88
368.00	-0.08	-0.11	-0.24	-0.11	-0.08	0	4.79	4.79	4.79	0	-4.79	-4.79	-4.79
370.00	-0.08	-0.11	-0.24	-0.11	-0.08	0	4.71	4.71	4.71	0	-4.71	-4.71	-4.71

372.00	-0.08	-0.11	-0.24	-0.11	-0.08	0	4.62	4.62	4.62	0	-4.62	-4.62	-4.62
374.00	-0.08	-0.11	-0.24	-0.11	-0.08	0	4.53	4.53	4.53	0	-4.53	-4.53	-4.53
376.00	-0.08	-0.11	-0.24	-0.11	-0.08	0	4.45	4.45	4.45	0	-4.45	-4.45	-4.45
378.00	-0.08	-0.11	-0.24	-0.11	-0.08	0	4.36	4.36	4.36	0	-4.36	-4.36	-4.36
380.00	-0.08	-0.11	-0.24	-0.11	-0.08	0	4.28	4.28	4.28	0	-4.28	-4.28	-4.28
0	0.00	0.00	0.00	0.00	0.00	0	0.00	0.00	0.00	0	0.00	0.00	0.00
380.00	-0.08	-0.11	-0.24	-0.11	-0.08	0	4.28	4.28	4.28	0	-4.28	-4.28	-4.28
382.00	-0.08	-0.11	-0.24	-0.11	-0.08	0	4.19	4.19	4.19	0	-4.19	-4.19	-4.19
384.00	-0.08	-0.11	-0.24	-0.11	-0.08	0	4.11	4.11	4.11	0	-4.11	-4.11	-4.11
386.00	-0.08	-0.11	-0.24	-0.11	-0.08	0	4.02	4.02	4.02	0	-4.02	-4.02	-4.02
388.00	-0.08	-0.11	-0.24	-0.11	-0.08	0	3.94	3.94	3.94	0	-3.94	-3.94	-3.94
390.00	-0.08	-0.11	-0.24	-0.11	-0.08	0	3.85	3.85	3.85	0	-3.85	-3.85	-3.85
392.00	-0.08	-0.11	-0.24	-0.11	-0.08	0	3.76	3.76	3.76	0	-3.76	-3.76	-3.76
394.00	-0.08	-0.11	-0.24	-0.11	-0.08	0	3.68	3.68	3.68	0	-3.68	-3.68	-3.68
396.00	-0.08	-0.11	-0.24	-0.11	-0.08	0	3.59	3.59	3.59	0	-3.59	-3.59	-3.59
398.00	-0.08	-0.11	-0.24	-0.11	-0.08	0	3.51	3.51	3.51	0	-3.51	-3.51	-3.51
400.00	-0.08	-0.11	-0.24	-0.11	-0.08	0	3.42	3.42	3.42	0	-3.42	-3.42	-3.42
0	0.00	0.00	0.00	0.00	0.00	0	0.00	0.00	0.00	0	0.00	0.00	0.00
400.00	-0.08	-0.11	-0.24	-0.11	-0.08	0	3.42	3.42	3.42	0	-3.42	-3.42	-3.42
402.00	-0.08	-0.11	-0.24	-0.11	-0.08	0	3.34	3.34	3.34	0	-3.34	-3.34	-3.34
404.00	-0.08	-0.11	-0.24	-0.11	-0.08	0	3.25	3.25	3.25	0	-3.25	-3.25	-3.25
406.00	-0.08	-0.11	-0.24	-0.11	-0.08	0	3.17	3.17	3.17	0	-3.17	-3.17	-3.17
408.00	-0.08	-0.11	-0.24	-0.11	-0.08	0	3.08	3.08	3.08	0	-3.08	-3.08	-3.08
410.00	-0.08	-0.11	-0.24	-0.11	-0.08	0	2.99	2.99	2.99	0	-2.99	-2.99	-2.99
412.00	-0.08	-0.11	-0.24	-0.11	-0.08	0	2.91	2.91	2.91	0	-2.91	-2.91	-2.91
414.00	-0.08	-0.11	-0.24	-0.11	-0.08	0	2.82	2.82	2.82	0	-2.82	-2.82	-2.82
416.00	-0.08	-0.11	-0.24	-0.11	-0.08	0	2.74	2.74	2.74	0	-2.74	-2.74	-2.74
418.00	-0.08	-0.11	-0.24	-0.11	-0.08	0	2.65	2.65	2.65	0	-2.65	-2.65	-2.65
420.00	-0.08	-0.11	-0.24	-0.11	-0.08	0	2.57	2.57	2.57	0	-2.57	-2.57	-2.57
0	0.00	0.00	0.00	0.00	0.00	0	0.00	0.00	0.00	0	0.00	0.00	0.00
420.00	-0.08	-0.11	-0.24	-0.11	-0.08	0	2.57	2.57	2.57	0	-2.57	-2.57	-2.57
0	1	2	3	2'	1'	0'	0	1	2	3	2'	1'	0'
Ζ													
422.00	-0.08	-0.11	-0.24	-0.11	-0.08	0	2.48	2.48	2.48	0	-2.48	-2.48	-2.48
424.00	-0.08	-0.11	-0.24	-0.11	-0.08	0	2.40	2.40	2.40	0	-2.40	-2.40	-2.40
426.00	-0.08	-0.11	-0.24	-0.11	-0.08	0	2.31	2.31	2.31	0	-2.31	-2.31	-2.31
428.00	-0.08	-0.11	-0.24	-0.11	-0.08	0	2.22	2.22	2.22	0	-2.22	-2.22	-2.22
430.00	-0.08	-0.11	-0.24	-0.11	-0.08	0	2.14	2.14	2.14	0	-2.14	-2.14	-2.14
432.00	-0.08	-0.11	-0.24	-0.11	-0.08	0	2.05	2.05	2.05	0	-2.05	-2.05	-2.05
434.00	-0.08	-0.11	-0.24	-0.11	-0.08	0	1.97	1.97	1.97	0	-1.97	-1.97	-1.97
436.00	-0.08	-0.11	-0.24	-0.11	-0.08	0	1.88	1.88	1.88	0	-1.88	-1.88	-1.88
438.00	-0.08	-0.11	-0.24	-0.11	-0.08	0	1.80	1.80	1.80	0	-1.80	-1.80	-1.80
440.00	-0.08	-0.11	-0.24	-0.11	-0.08	0	1.71	1.71	1.71	0	-1.71	-1.71	-1.71
0	0.00	0.00	0.00	0.00	0.00	0	0.00	0.00	0.00	0	0.00	0.00	0.00
						-							

440.00	-0.08	-0.11	-0.24	-0.11	-0.08	0	1.71	1.71	1.71	0	-1.71	-1.71	-1.71
442.00	-0.08	-0.11	-0.24	-0.11	-0.08	0	1.63	1.63	1.63	0	-1.63	-1.63	-1.63
444.00	-0.08	-0.11	-0.24	-0.11	-0.08	0	1.54	1.54	1.54	0	-1.54	-1.54	-1.54
446.00	-0.08	-0.11	-0.24	-0.11	-0.08	0	1.45	1.45	1.45	0	-1.45	-1.45	-1.45
448.00	-0.08	-0.11	-0.24	-0.11	-0.08	0	1.37	1.37	1.37	0	-1.37	-1.37	-1.37
450.00	-0.08	-0.11	-0.24	-0.11	-0.08	0	1.28	1.28	1.28	0	-1.28	-1.28	-1.28
452.00	-0.08	-0.11	-0.24	-0.11	-0.08	0	1.20	1.20	1.20	0	-1.20	-1.20	-1.20
454.00	-0.08	-0.11	-0.24	-0.11	-0.08	0	1.11	1.11	1.11	0	-1.11	-1.11	-1.11
456.00	-0.08	-0.11	-0.24	-0.11	-0.08	0	1.03	1.03	1.03	0	-1.03	-1.03	-1.03
458.00	-0.08	-0.11	-0.24	-0.11	-0.08	0	0.94	0.94	0.94	0	-0.94	-0.94	-0.94
460.00	-0.08	-0.11	-0.24	-0.11	-0.08	0	0.86	0.86	0.86	0	-0.86	-0.86	-0.86
0	0.00	0.00	0.00	0.00	0.00	0	0.00	0.00	0.00	0	0.00	0.00	0.00
460.00	-0.08	-0.11	-0.24	-0.11	-0.08	0	0.86	0.86	0.86	0	-0.86	-0.86	-0.86
462.00	-0.08	-0.11	-0.24	-0.11	-0.08	0	0.77	0.77	0.77	0	-0.77	-0.77	-0.77
464.00	-0.08	-0.11	-0.24	-0.11	-0.08	0	0.68	0.68	0.68	0	-0.68	-0.68	-0.68
466.00	-0.08	-0.11	-0.24	-0.11	-0.08	0	0.60	0.60	0.60	0	-0.60	-0.60	-0.60
468.00	-0.08	-0.11	-0.24	-0.11	-0.08	0	0.51	0.51	0.51	0	-0.51	-0.51	-0.51
470.00	-0.08	-0.11	-0.24	-0.11	-0.08	0	0.43	0.43	0.43	0	-0.43	-0.43	-0.43
472.00	-0.08	-0.11	-0.24	-0.11	-0.08	0	0.34	0.34	0.34	0	-0.34	-0.34	-0.34
474.00	-0.08	-0.11	-0.24	-0.11	-0.08	0	0.26	0.26	0.26	0	-0.26	-0.26	-0.26
476.00	-0.08	-0.11	-0.24	-0.11	-0.08	0	0.17	0.17	0.17	0	-0.17	-0.17	-0.17
478.00	-0.08	-0.11	-0.24	-0.11	-0.08	0	0.09	0.09	0.09	0	-0.09	-0.09	-0.09
480.00	-0.08	-0.11	-0.24	-0.11	-0.08	0	0.00	0.00	0.00	0	0.00	0.00	0.00

Table of Combined Normal Stresses

Ζ							
0.0	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2.0	0.139	0.148	0.152	0.000	-0.152	-0.148	-0.139
4.0	0.277	0.296	0.304	0.000	-0.304	-0.296	-0.277
6.0	0.415	0.443	0.455	0.000	-0.455	-0.443	-0.415
8.0	0.553	0.591	0.607	0.000	-0.607	-0.591	-0.553
10.0	0.691	0.739	0.759	0.000	-0.759	-0.739	-0.691
12.0	0.828	0.887	0.912	0.000	-0.912	-0.887	-0.828
14.0	0.965	1.034	1.064	0.000	-1.064	-1.034	-0.965
16.0	1.101	1.182	1.217	0.000	-1.217	-1.182	-1.101
18.0	1.236	1.330	1.370	0.000	-1.370	-1.330	-1.236
20.0	1.371	1.478	1.524	0.000	-1.524	-1.478	-1.371
	0.000	0.000	0.000	0.000	0.000	0.000	0.000
20.0	1.371	1.478	1.524	0.000	-1.524	-1.478	-1.371
22.0	1.504	1.626	1.678	0.000	-1.678	-1.626	-1.504
24.0	1.637	1.773	1.832	0.000	-1.832	-1.773	-1.637
26.0	1.768	1.921	1.987	0.000	-1.987	-1.921	-1.768
28.0	1.898	2.069	2.142	0.000	-2.142	-2.069	-1.898
30.0	2.026	2.217	2.299	0.000	-2.299	-2.217	-2.026

32.0	2,152	2.364	2.456	0.000	-2.456	-2.364	-2.152
34.0	2.277	2.512	2.613	0.000	-2.613	-2.512	-2.277
36.0	2.399	2.660	2,772	0.000	-2.772	-2.660	-2.399
38.0	2.519	2.808	2.932	0.000	-2.932	-2.808	-2.519
40.0	2.636	2.956	3.093	0.000	-3.093	-2.956	-2.636
	0.000	0.000	0.000	0.000	0.000	0.000	0.000
40.0	2.636	2.956	3.093	0.000	-3.093	-2.956	-2.636
42.0	2.750	3.103	3.255	0.000	-3.255	-3.103	-2.750
44.0	2.861	3.251	3.418	0.000	-3.418	-3.251	-2.861
46.0	2.969	3.399	3.583	0.000	-3.583	-3.399	-2.969
48.0	3.073	3.547	3.750	0.000	-3.750	-3.547	-3.073
50.0	3.172	3.694	3.919	0.000	-3.919	-3.694	-3.172
52.0	3.266	3.842	4.089	0.000	-4.089	-3.842	-3.266
54.0	3.356	3.990	4.262	0.000	-4.262	-3.990	-3.356
56.0	3.439	4.138	4.438	0.000	-4.438	-4.138	-3.439
58.0	3.516	4.286	4.616	0.000	-4.616	-4.286	-3.516
60.0	3.586	4.433	4.797	0.000	-4.797	-4.433	-3.586
	0.000	0.000	0.000	0.000	0.000	0.000	0.000
60.0	3.586	4.433	4.797	0.000	-4.797	-4.433	-3.586
62.0	3.648	4.581	4.982	0.000	-4.982	-4.581	-3.648
64.0	3.701	4.729	5.170	0.000	-5.170	-4.729	-3.701
66.0	3.746	4.877	5.362	0.000	-5.362	-4.877	-3.746
68.0	3.780	5.024	5.558	0.000	-5.558	-5.024	-3.780
70.0	3.802	5.172	5.760	0.000	-5.760	-5.172	-3.802
72.0	3.812	5.320	5.967	0.000	-5.967	-5.320	-3.812
74.0	3.808	5.468	6.180	0.000	-6.180	-5.468	-3.808
76.0	3.788	5.616	6.400	0.000	-6.400	-5.616	-3.788
78.0	3.753	5.763	6.626	0.000	-6.626	-5.763	-3.753
80.0	3.699	5.911	6.860	0.000	-6.860	-5.911	-3.699
	0.000	0.000	0.000	0.000	0.000	0.000	0.000
80.0	3.700	5.911	6.860	0.000	-6.860	-5.911	-3.700
82.0	3.624	6.059	7.104	0.000	-7.104	-6.059	-3.624
84.0	3.527	6.207	7.357	0.000	-7.357	-6.207	-3.527
86.0	3.406	6.354	7.620	0.000	-7.620	-6.354	-3.406
88.0	3.257	6.502	7.894	0.000	-7.894	-6.502	-3.257
90.0	3.081	6.650	8.182	0.000	-8.182	-6.650	-3.081
92.0	2.869	6.798	8.484	0.000	-8.484	-6.798	-2.869
94.0	2.619	6.946	8.802	0.000	-8.802	-6.946	-2.619
96.0	2.333	7.093	9.136	0.000	-9.136	-7.093	-2.333
98.0	2.006	7.241	9.487	0.000	-9.487	-7.241	-2.006
100.0	1.628	7.389	9.861	0.000	-9.861	-7.389	-1.628
	0.000	0.000	0.000	0.000	0.000	0.000	0.000
100.0	1.631	7.389	9.859	0.000	-9.859	-7.389	-1.631

102.0	1.195	7.537	10.258	0.000	-10.258	-7.537	-1.195
104.0	0.705	7.684	10.679	0.000	-10.679	-7.684	-0.705
106.0	0.154	7.832	11.127	0.000	-11.127	-7.832	-0.154
108.0	-0.469	7.980	11.605	0.000	-11.605	-7.980	0.469
110.0	-1.169	8.128	12.117	0.000	-12.117	-8.128	1.169
112.0	-1.954	8.276	12.665	0.000	-12.665	-8.276	1.954
114.0	-2.835	8.423	13.254	0.000	-13.254	-8.423	2.835
116.0	-3.820	8.571	13.888	0.000	-13.888	-8.571	3.820
118.0	-4.914	8.719	14.568	0.000	-14.568	-8.719	4.914
120.0	-6.130	8.867	15.301	0.000	-15.301	-8.867	6.130
					0.000	0.000	0.000
120.0	-6.134	8.867	15.303	0.000	-15.303	-8.867	6.134
121.8	-5.285	8.372	14.232	0.000	-14.232	-8.372	5.285
123.6	-4.534	7.877	13.203	0.000	-13.203	-7.877	4.534
125.4	-3.872	7.383	12.212	0.000	-12.212	-7.383	3.872
127.2	-3.294	6.888	11.257	0.000	-11.257	-6.888	3.294
129.0	-2.795	6.393	10.336	0.000	-10.336	-6.393	2.795
130.8	-2.363	5.899	9.444	0.000	-9.444	-5.899	2.363
132.6	-1.993	5.404	8.578	0.000	-8.578	-5.404	1.993
134.4	-1.676	4.909	7.735	0.000	-7.735	-4.909	1.676
136.2	-1.411	4.415	6.914	0.000	-6.914	-4.415	1.411
138.0	-1.183	3.920	6.110	0.000	-6.110	-3.920	1.183
					0.000	0.000	0.000
138.0	-1.186	3.920	6.111	0.000	-6.111	-3.920	1.186
139.8	-0.999	3.425	5.324	0.000	-5.324	-3.425	0.999
141.6	-0.846	2.931	4.551	0.000	-4.551	-2.931	0.846
143.4	-0.722	2.436	3.791	0.000	-3.791	-2.436	0.722
145.2	-0.620	1.941	3.040	0.000	-3.040	-1.941	0.620
147.0	-0.537	1.447	2.298	0.000	-2.298	-1.447	0.537
148.8	-0.469	0.952	1.562	0.000	-1.562	-0.952	0.469
150.6	-0.412	0.457	0.830	0.000	-0.830	-0.457	0.412
152.4	-0.361	-0.037	0.102	0.000	-0.102	0.037	0.361
154.2	-0.312	-0.532	-0.626	0.000	0.626	0.532	0.312
156.0	-0.261	-1.027	-1.355	0.000	1.355	1.027	0.261
					0.000	0.000	0.000
156.0	-0.263	-1.027	-1.354	0.000	1.354	1.027	0.263
157.8	-0.206	-1.521	-2.086	0.000	2.086	1.521	0.206
159.6	-0.140	-2.016	-2.821	0.000	2.821	2.016	0.140
161.4	-0.061	-2.511	-3.562	0.000	3.562	2.511	0.061
163.2	0.037	-3.005	-4.311	0.000	4.311	3.005	-0.037
165.0	0.158	-3.500	-5.069	0.000	5.069	3.500	-0.158
166.8	0.304	-3.995	-5.839	0.000	5.839	3.995	-0.304
168.6	0.485	-4.489	-6.624	0.000	6.624	4.489	-0.485

170.4	0.703	-4.984	-7.424	0.000	7.424	4.984	-0.703
172.2	0.958	-5.479	-8.240	0.000	8.240	5.479	-0.958
174.0	1.264	-5.973	-9.079	0.000	9.079	5.973	-1.264
					0.000	0.000	0.000
174.0	1.261	-5.973	-9.077	0.000	9.077	5.973	-1.261
175.8	1.628	-6.468	-9.942	0.000	9.942	6.468	-1.628
177.6	2.046	-6.963	-10.828	0.000	10.828	6.963	-2.046
179.4	2.532	-7.457	-11.743	0.000	11.743	7.457	-2.532
181.2	3.092	-7.952	-12.691	0.000	12.691	7.952	-3.092
183.0	3.734	-8.447	-13.673	0.000	13.673	8.447	-3.734
184.8	4.468	-8.941	-14.695	0.000	14.695	8.941	-4.468
186.6	5.303	-9.436	-15.760	0.000	15.760	9.436	-5.303
188.4	6.247	-9.931	-16.872	0.000	16.872	9.931	-6.247
190.2	7.306	-10.425	-18.033	0.000	18.033	10.425	-7.306
192.0	8.491	-10.920	-19.249	0.000	19.249	10.920	-8.491
					0.000	0.000	0.000
192.0	8.491	-10.920	-19.249	0.000	19.249	10.920	-8.491
194.1	6.846	-10.719	-18.256	0.000	18.256	10.719	-6.846
196.2	5.367	-10.519	-17.335	0.000	17.335	10.519	-5.367
198.3	4.048	-10.318	-16.482	0.000	16.482	10.318	-4.048
200.4	2.871	-10.117	-15.690	0.000	15.690	10.117	-2.871
202.5	1.830	-9.917	-14.957	0.000	14.957	9.917	-1.830
204.6	0.907	-9.716	-14.274	0.000	14.274	9.716	-0.907
206.7	0.094	-9.515	-13.638	0.000	13.638	9.515	-0.094
208.8	-0.622	-9.315	-13.044	0.000	13.044	9.315	0.622
210.9	-1.252	-9.114	-12.487	0.000	12.487	9.114	1.252
213.0	-1.815	-8.913	-11.959	0.000	11.959	8.913	1.815
	0.000	0.000	0.000	0.000	0.000	0.000	0.000
213.0	-1.808	-8.913	-11.962	0.000	11.962	8.913	1.808
215.1	-2.286	-8.713	-11.470	0.000	11.470	8.713	2.286
217.2	-2.700	-8.512	-11.006	0.000	11.006	8.512	2.700
219.3	-3.056	-8.311	-10.566	0.000	10.566	8.311	3.056
221.4	-3.360	-8.111	-10.149	0.000	10.149	8.111	3.360
223.5	-3.618	-7.910	-9.752	0.000	9.752	7.910	3.618
225.6	-3.828	-7.709	-9.375	0.000	9.375	7.709	3.828
227.7	-4.000	-7.509	-9.014	0.000	9.014	/.509	4.000
229.8	-4.136	-/.508	-8.669	0.000	8.669	/.308	4.136
231.9	-4.241	-/.10/	-8.55/	0.000	8.55/	/.10/	4.241
234.0	-4.320	-6.907	-8.017	0.000	8.017	6.90/	4.320
224.0	0.000	0.000	0.000	0.000	0.000	0.000	0.000
234.0	-4.318	-6.907	-8.017	0.000	8.01/	6.907	4.318
236.1	-4.367	-6.706	-/./10	0.000	/./10	6.706	4.36/
238.2	-4.393	-6.505	-7.412	0.000	7.412	6.505	4.393

240.3	-4.398	-6.305	-7.123	0.000	7.123	6.305	4.398
242.4	-4.384	-6.104	-6.842	0.000	6.842	6.104	4.384
244.5	-4.352	-5.903	-6.569	0.000	6.569	5.903	4.352
246.6	-4.305	-5.703	-6.302	0.000	6.302	5.703	4.305
248.7	-4.243	-5.502	-6.042	0.000	6.042	5.502	4.243
250.8	-4.168	-5.301	-5.788	0.000	5.788	5.301	4.168
252.9	-4.082	-5.101	-5.538	0.000	5.538	5.101	4.082
255.0	-3.988	-4.900	-5.291	0.000	5.291	4.900	3.988
	0.000	0.000	0.000	0.000	0.000	0.000	0.000
255.0	-3.987	-4.900	-5.292	0.000	5.292	4.900	3.987
257.1	-3.881	-4.699	-5.050	0.000	5.050	4.699	3.881
259.2	-3.768	-4.499	-4.812	0.000	4.812	4.499	3.768
261.3	-3.647	-4.298	-4.577	0.000	4.577	4.298	3.647
263.4	-3.520	-4.097	-4.345	0.000	4.345	4.097	3.520
265.5	-3.386	-3.897	-4.116	0.000	4.116	3.897	3.386
267.6	-3.248	-3.696	-3.888	0.000	3.888	3.696	3.248
269.7	-3.105	-3.495	-3.663	0.000	3.663	3.495	3.105
271.8	-2.958	-3.295	-3.439	0.000	3.439	3.295	2.958
273.9	-2.807	-3.094	-3.217	0.000	3.217	3.094	2.807
276.0	-2.655	-2.893	-2.996	0.000	2.996	2.893	2.655
	0.000	0.000	0.000	0.000	0.000	0.000	0.000
276.0	-2.654	-2.893	-2.996	0.000	2.996	2.893	2.654
278.1	-2.499	-2.693	-2.776	0.000	2.776	2.693	2.499
280.2	-2.341	-2.492	-2.557	0.000	2.557	2.492	2.341
282.3	-2.182	-2.291	-2.338	0.000	2.338	2.291	2.182
284.4	-2.022	-2.091	-2.120	0.000	2.120	2.091	2.022
286.5	-1.861	-1.890	-1.903	0.000	1.903	1.890	1.861
288.6	-1.699	-1.689	-1.685	0.000	1.685	1.689	1.699
290.7	-1.538	-1.489	-1.467	0.000	1.467	1.489	1.538
292.8	-1.378	-1.288	-1.250	0.000	1.250	1.288	1.378
294.9	-1.218	-1.087	-1.031	0.000	1.031	1.087	1.218
297.0	-1.059	-0.887	-0.813	0.000	0.813	0.887	1.059
	0.000	0.000	0.000	0.000	0.000	0.000	0.000
297.0	-1.059	-0.887	-0.813	0.000	0.813	0.887	1.059
299.1	-0.903	-0.686	-0.593	0.000	0.593	0.686	0.903
301.2	-0.748	-0.485	-0.372	0.000	0.372	0.485	0.748
303.3	-0.596	-0.285	-0.151	0.000	0.151	0.285	0.596
305.4	-0.448	-0.084	0.072	0.000	-0.072	0.084	0.448
307.5	-0.303	0.117	0.297	0.000	-0.297	-0.117	0.303
309.6	-0.162	0.317	0.523	0.000	-0.523	-0.317	0.162
$\frac{311.}{212.0}$	-0.026	0.518	0.751	0.000	-0./51	-0.518	0.026
315.8	0.105	0./19	0.982	0.000	-0.982	-0./19	-0.105
315.9	0.229	0.919	1.216	0.000	-1.216	-0.919	-0.229

318.0	0.346	1.120	1.452	0.000	-1.452	-1.120	-0.346
	0.000	0.000	0.000	0.000	0.000	0.000	0.000
318.0	0.347	1.120	1.452	0.000	-1.452	-1.120	-0.347
320.1	0.455	1.321	1.692	0.000	-1.692	-1.321	-0.455
322.2	0.556	1.521	1.936	0.000	-1.936	-1.521	-0.556
324.3	0.647	1.722	2.183	0.000	-2.183	-1.722	-0.647
326.4	0.727	1.923	2.436	0.000	-2.436	-1.923	-0.727
328.5	0.796	2.123	2.693	0.000	-2.693	-2.123	-0.796
330.6	0.850	2.324	2.956	0.000	-2.956	-2.324	-0.850
332.7	0.889	2.525	3.226	0.000	-3.226	-2.525	-0.889
334.8	0.912	2.725	3.503	0.000	-3.503	-2.725	-0.912
336.9	0.917	2.926	3.788	0.000	-3.788	-2.926	-0.917
339.0	0.903	3.127	4.081	0.000	-4.081	-3.127	-0.903
	0.000	0.000	0.000	0.000	0.000	0.000	0.000
339.0	0.904	3.127	4.080	0.000	-4.080	-3.127	-0.904
341.1	0.864	3.327	4.384	0.000	-4.384	-3.327	-0.864
343.2	0.801	3.528	4.698	0.000	-4.698	-3.528	-0.801
345.3	0.711	3.729	5.023	0.000	-5.023	-3.729	-0.711
347.4	0.591	3.929	5.362	0.000	-5.362	-3.929	-0.591
349.5	0.435	4.130	5.715	0.000	-5.715	-4.130	-0.435
351.6	0.245	4.331	6.083	0.000	-6.083	-4.331	-0.245
353.7	0.012	4.531	6.470	0.000	-6.470	-4.531	-0.012
355.8	-0.269	4.732	6.878	0.000	-6.878	-4.732	0.269
357.9	-0.598	4.933	7.306	0.000	-7.306	-4.933	0.598
360.0	-0.981	5.133	7.757	0.000	-7.757	-5.133	0.981
					0.000	0.000	0.000
360.0	-0.981	5.133	7.757	0.000	-7.757	-5.133	0.981
362.0	-0.510	5.048	7.432	0.000	-7.432	-5.048	0.510
364.0	-0.090	4.962	7.130	0.000	-7.130	-4.962	0.090
366.0	0.286	4.877	6.846	0.000	-6.846	-4.877	-0.286
368.0	0.621	4.791	6.580	0.000	-6.580	-4.791	-0.621
370.0	0.916	4.706	6.332	0.000	-6.332	-4.706	-0.916
372.0	1.176	4.620	6.098	0.000	-6.098	-4.620	-1.176
374.0	1.404	4.534	5.878	0.000	-5.878	-4.534	-1.404
376.0	1.604	4.449	5.670	0.000	-5.670	-4.449	-1.604
378.0	1.778	4.363	5.473	0.000	-5.473	-4.363	-1.778
380.0	1.931	4.278	5.285	0.000	-5.285	-4.278	-1.931
380.0	1.929	4.278	5.285	0.000	-5.285	-4.278	-1.929
382.0	2.057	4.192	5.108	0.000	-5.108	-4.192	-2.057
384.0	2.167	4.107	4.939	0.000	-4.939	-4.107	-2.167
386.0	2.258	4.021	4.777	0.000	-4.777	-4.021	-2.258
388.0	2.334	3.936	4.623	0.000	-4.623	-3.936	-2.334
390.0	2.395	3.850	4.474	0.000	-4.474	-3.850	-2.395

392.0	2.442	3.764	4.332	0.000	-4.332	-3.764	-2.442
394.0	2.477	3.679	4.195	0.000	-4.195	-3.679	-2.477
396.0	2.501	3.593	4.062	0.000	-4.062	-3.593	-2.501
398.0	2.515	3.508	3.934	0.000	-3.934	-3.508	-2.515
400.0	2.521	3.422	3.809	0.000	-3.809	-3.422	-2.521
400.0	2.521	3.422	3.809	0.000	-3.809	-3.422	-2.521
402.0	2.517	3.337	3.688	0.000	-3.688	-3.337	-2.517
404.0	2.506	3.251	3.571	0.000	-3.571	-3.251	-2.506
406.0	2.489	3.166	3.456	0.000	-3.456	-3.166	-2.489
408.0	2.465	3.080	3.344	0.000	-3.344	-3.080	-2.465
410.0	2.436	2.994	3.234	0.000	-3.234	-2.994	-2.436
412.0	2.402	2.909	3.127	0.000	-3.127	-2.909	-2.402
414.0	2.362	2.823	3.021	0.000	-3.021	-2.823	-2.362
416.0	2.319	2.738	2.918	0.000	-2.918	-2.738	-2.319
418.0	2.272	2.652	2.815	0.000	-2.815	-2.652	-2.272
420.0	2.222	2.567	2.715	0.000	-2.715	-2.567	-2.222
	0.000	0.000	0.000	0.000	0.000	0.000	0.000
420.0	2.221	2.567	2.715	0.000	-2.715	-2.567	-2.221
422.0	2.167	2.481	2.616	0.000	-2.616	-2.481	-2.167
424.0	2.111	2.396	2.518	0.000	-2.518	-2.396	-2.111
426.0	2.051	2.310	2.421	0.000	-2.421	-2.310	-2.051
428.0	1.990	2.224	2.325	0.000	-2.325	-2.224	-1.990
430.0	1.926	2.139	2.230	0.000	-2.230	-2.139	-1.926
432.0	1.860	2.053	2.136	0.000	-2.136	-2.053	-1.860
434.0	1.793	1.968	2.043	0.000	-2.043	-1.968	-1.793
436.0	1.723	1.882	1.950	0.000	-1.950	-1.882	-1.723
438.0	1.653	1.797	1.858	0.000	-1.858	-1.797	-1.653
440.0	1.581	1.711	1.767	0.000	-1.767	-1.711	-1.581
	0.000	0.000	0.000	0.000	0.000	0.000	0.000
440.0	1.581	1.711	1.767	0.000	-1.767	-1.711	-1.581
442.0	1.508	1.626	1.676	0.000	-1.676	-1.626	-1.508
444.0	1.434	1.540	1.586	0.000	-1.586	-1.540	-1.434
446.0	1.358	1.454	1.496	0.000	-1.496	-1.454	-1.358
448.0	1.282	1.369	1.406	0.000	-1.406	-1.369	-1.282
450.0	1.205	1.283	1.317	0.000	-1.317	-1.283	-1.205
452.0	1.128	1.198	1.228	0.000	-1.228	-1.198	-1.128
454.0	1.050	1.112	1.139	0.000	-1.139	-1.112	-1.050
456.0	0.971	1.027	1.051	0.000	-1.051	-1.027	-0.971
458.0	0.892	0.941	0.962	0.000	-0.962	-0.941	-0.892
460.0	0.812	0.856	0.874	0.000	-0.874	-0.856	-0.812
	0.000	0.000	0.000	0.000	0.000	0.000	0.000
460.0	0.812	0.856	0.874	0.000	-0.874	-0.856	-0.812
462.0	0.732	0.770	0.786	0.000	-0.786	-0.770	-0.732

464.0	0.651	0.684	0.699	0.000	-0.699	-0.684	-0.651
466.0	0.571	0.599	0.611	0.000	-0.611	-0.599	-0.571
468.0	0.490	0.513	0.524	0.000	-0.524	-0.513	-0.490
470.0	0.408	0.428	0.436	0.000	-0.436	-0.428	-0.408
472.0	0.327	0.342	0.349	0.000	-0.349	-0.342	-0.327
474.0	0.245	0.257	0.262	0.000	-0.262	-0.257	-0.245
476.0	0.164	0.171	0.174	0.000	-0.174	-0.171	-0.164
478.0	0.082	0.086	0.087	0.000	-0.087	-0.086	-0.082
480.0	0.000	0.000	0.000	0.000	0.000	0.000	0.000

Total Shear with Positive St. Vt. Contribution

	I Otul D	ilour wit			, t. Com	inourio	11
Z	Combi	ned She	ar Stres	s with l	Positive	St. Vt.	
0.0	-0.901	-0.771	-0.713	-0.505	-0.713	-0.771	-0.901
2.0	-0.901	-0.771	-0.712	-0.505	-0.712	-0.771	-0.901
4.0	-0.900	-0.770	-0.712	-0.504	-0.712	-0.770	-0.900
6.0	-0.900	-0.770	-0.711	-0.503	-0.711	-0.770	-0.900
8.0	-0.898	-0.769	-0.710	-0.502	-0.710	-0.769	-0.898
10.0	-0.897	-0.768	-0.709	-0.501	-0.709	-0.768	-0.897
12.0	-0.895	-0.766	-0.707	-0.498	-0.707	-0.766	-0.895
14.0	-0.893	-0.764	-0.706	-0.496	-0.706	-0.764	-0.893
16.0	-0.890	-0.762	-0.703	-0.493	-0.703	-0.762	-0.890
18.0	-0.887	-0.759	-0.700	-0.490	-0.700	-0.759	-0.887
20.0	-0.884	-0.756	-0.697	-0.487	-0.697	-0.756	-0.884
	0.000	0.000	0.000	0.000	0.000	0.000	0.000
20.0	-0.884	-0.756	-0.697	-0.486	-0.697	-0.756	-0.884
22.0	-0.880	-0.753	-0.694	-0.483	-0.694	-0.753	-0.880
24.0	-0.876	-0.749	-0.690	-0.478	-0.690	-0.749	-0.876
26.0	-0.871	-0.745	-0.685	-0.472	-0.685	-0.745	-0.871
28.0	-0.865	-0.740	-0.681	-0.467	-0.681	-0.740	-0.865
30.0	-0.859	-0.735	-0.675	-0.460	-0.675	-0.735	-0.859
32.0	-0.852	-0.729	-0.669	-0.452	-0.669	-0.729	-0.852
34.0	-0.844	-0.722	-0.662	-0.444	-0.662	-0.722	-0.844
36.0	-0.836	-0.715	-0.654	-0.435	-0.654	-0.715	-0.836
38.0	-0.826	-0.707	-0.646	-0.425	-0.646	-0.707	-0.826
40.0	-0.816	-0.698	-0.637	-0.414	-0.637	-0.698	-0.816
	0.000	0.000	0.000	0.000	0.000	0.000	0.000
40.0	-0.816	-0.698	-0.637	-0.413	-0.637	-0.698	-0.816
42.0	-0.805	-0.688	-0.627	-0.402	-0.627	-0.688	-0.805
44.0	-0.792	-0.677	-0.616	-0.388	-0.616	-0.677	-0.792
46.0	-0.778	-0.665	-0.603	-0.373	-0.603	-0.665	-0.778
48.0	-0.762	-0.651	-0.589	-0.356	-0.589	-0.651	-0.762

50.0	-0.746	-0.637	-0.574	-0.338	-0.574	-0.637	-0.746
52.0	-0.726	-0.620	-0.557	-0.318	-0.557	-0.620	-0.726
54.0	-0.706	-0.603	-0.539	-0.296	-0.539	-0.603	-0.706
56.0	-0.683	-0.583	-0.519	-0.271	-0.519	-0.583	-0.683
58.0	-0.658	-0.561	-0.496	-0.244	-0.496	-0.561	-0.658
60.0	-0.630	-0.537	-0.471	-0.214	-0.471	-0.537	-0.630
	0.000	0.000	0.000	0.000	0.000	0.000	0.000
60.0	-0.630	-0.538	-0.472	-0.214	-0.472	-0.538	-0.630
62.0	-0.600	-0.511	-0.445	-0.182	-0.445	-0.511	-0.600
64.0	-0.566	-0.482	-0.415	-0.146	-0.415	-0.482	-0.566
66.0	-0.529	-0.450	-0.382	-0.106	-0.382	-0.450	-0.529
68.0	-0.489	-0.415	-0.346	-0.062	-0.346	-0.415	-0.489
70.0	-0.444	-0.377	-0.306	-0.014	-0.306	-0.377	-0.444
72.0	-0.395	-0.334	-0.263	0.039	-0.263	-0.334	-0.395
74.0	-0.340	-0.287	-0.215	0.097	-0.215	-0.287	-0.340
76.0	-0.281	-0.236	-0.162	0.161	-0.162	-0.236	-0.281
78.0	-0.215	-0.179	-0.103	0.231	-0.103	-0.179	-0.215
80.0	-0.143	-0.116	-0.038	0.308	-0.038	-0.116	-0.143
	0.000	0.000	0.000	0.000	0.000	0.000	0.000
80.0	-0.143	-0.118	-0.040	0.309	-0.040	-0.118	-0.143
82.0	-0.063	-0.049	0.031	0.394	0.031	-0.049	-0.063
84.0	0.024	0.028	0.109	0.488	0.109	0.028	0.024
86.0	0.121	0.111	0.195	0.591	0.195	0.111	0.121
88.0	0.227	0.202	0.289	0.705	0.289	0.202	0.227
90.0	0.343	0.303	0.393	0.830	0.393	0.303	0.343
92.0	0.472	0.413	0.506	0.968	0.506	0.413	0.472
94.0	0.613	0.535	0.632	1.120	0.632	0.535	0.613
96.0	0.768	0.669	0.770	1.286	0.770	0.669	0.768
98.0	0.940	0.818	0.923	1.470	0.923	0.818	0.940
100.0	1.127	0.981	1.091	1.671	1.091	0.981	1.127
	0.000	0.000	0.000	0.000	0.000	0.000	0.000
100.0	1.127	0.975	1.085	1.673	1.085	0.975	1.127
102.0	1.335	1.157	1.272	1.895	1.272	1.157	1.335
104.0	1.563	1.355	1.476	2.138	1.476	1.355	1.563
106.0	1.814	1.573	1.699	2.407	1.699	1.573	1.814
108.0	2.090	1.811	1.944	2.704	1.944	1.811	2.090
110.0	2.393	2.072	2.213	3.029	2.213	2.072	2.393
112.0	2.727	2.359	2.509	3.388	2.509	2.359	2.727
114.0	3.095	2.677	2.836	3.783	2.836	2.677	3.095
116.0	3.500	3.027	3.196	4.217	3.196	3.027	3.500
118.0	3.945	3.413	3.593	4.694	3.593	3.413	3.945
120.0	4.436	3.840	4.032	5.219	4.032	3.840	4.436

					0.000	0.000	0.000
100.0			1.0.60		0.000	0.000	0.000
120.0	4.436	4.730	4.369	2.671	4.369	4.730	4.436
121.8	4.877	5.113	4.763	3.143	4.763	5.113	4.877
123.6	5.279	5.461	5.121	3.573	5.121	5.461	5.279
125.4	5.644	5.776	5.445	3.965	5.445	5.776	5.644
127.2	5.974	6.061	5.739	4.319	5.739	6.061	5.974
129.0	6.271	6.316	6.001	4.638	6.001	6.316	6.271
130.8	6.538	6.546	6.238	4.925	6.238	6.546	6.538
132.6	6.782	6.757	6.455	5.187	6.455	6.757	6.782
134.4	6.997	6.943	6.647	5.417	6.647	6.943	6.997
136.2	7.189	7.110	6.818	5.622	6.818	7.110	7.189
138.0	7.357	7.258	6.969	5.802	6.969	7.258	7.357
					0.000	0.000	0.000
138.0	7.357	7.254	6.966	5.804	6.966	7.254	7.357
139.8	7.503	7.380	7.096	5.960	7.096	7.380	7.503
141.6	7.631	7.490	7.210	6.096	7.210	7.490	7.631
143.4	7.735	7.580	7.302	6.209	7.302	7.580	7.735
145.2	7.828	7.661	7.385	6.308	7.385	7.661	7.828
147.0	7.898	7.721	7.447	6.383	7.447	7.721	7.898
148.8	7.950	7.766	7.493	6.439	7.493	7.766	7.950
150.6	7.985	7.796	7.524	6.477	7.524	7.796	7.985
152.4	8.003	7.811	7.540	6.496	7.540	7.811	8.003
154.2	8.003	7.811	7.540	6.496	7.540	7.811	8.003
156.0	7.985	7.796	7.524	6.477	7.524	7.796	7.985
					0.000	0.000	0.000
156.0	7.985	7.797	7.525	6.477	7.525	7.797	7.985
157.8	7.956	7.772	7.499	6.446	7.499	7.772	7.956
159.6	7.904	7.726	7.452	6.390	7.452	7.726	7.904
161.4	7.840	7.671	7.395	6.321	7.395	7.671	7.840
163.2	7.753	7.595	7.317	6.228	7.317	7.595	7.753
165.0	7.654	7.511	7.230	6.121	7.230	7.511	7.654
166.8	7.532	7.406	7.122	5.990	7.122	7.406	7.532
168.6	7.387	7.280	6.993	5.835	6.993	7.280	7.387
170.4	7.224	7.140	6.848	5.660	6.848	7.140	7.224
172.2	7.038	6.978	6.683	5.461	6.683	6.978	7.038
174.0	6.823	6.791	6.490	5.231	6.490	6.791	6.823
					0.000	0.000	0.000
174.0	6.823	6.797	6.495	5.228	6.495	6.797	6.823
175.8	6.590	6.594	6.287	4.980	6.287	6.594	6.590
177.6	6.323	6.361	6.048	4.694	6.048	6.361	6.323
179.4	6.032	6.110	5.789	4.382	5.789	6.110	6.032
181.2	5.709	5.831	5.502	4.035	5.502	5.831	5.709
L							

183.0	5.351	5.523	5.185	3.651	5.185	5.523	5.351
184.8	4.957	5.183	4.835	3.228	4.835	5.183	4.957
186.6	4.523	4.810	4.451	2.762	4.451	4.810	4.523
188.4	4.047	4.398	4.027	2.251	4.027	4.398	4.047
190.2	3.524	3.945	3.561	1.692	3.561	3.945	3.524
192.0	2.952	3.448	3.051	1.079	3.051	3.448	2.952
					0.000	0.000	0.000
192.0	2.952	2.181	2.429	3.915	2.429	2.181	2.952
194.1	2.287	1.602	1.834	3.204	1.834	1.602	2.287
196.2	1.687	1.081	1.298	2.560	1.298	1.081	1.687
198.3	1.143	0.611	0.815	1.977	0.815	0.611	1.143
200.4	0.651	0.187	0.378	1.449	0.378	0.187	0.651
202.5	0.207	-0.196	-0.015	0.972	-0.015	-0.196	0.207
204.6	-0.195	-0.542	-0.372	0.540	-0.372	-0.542	-0.195
206.7	-0.559	-0.855	-0.694	0.150	-0.694	-0.855	-0.559
208.8	-0.888	-1.140	-0.987	-0.202	-0.987	-1.140	-0.888
210.9	-1.186	-1.399	-1.254	-0.521	-1.254	-1.399	-1.186
213.0	-1.454	-1.635	-1.496	-0.807	-1.496	-1.635	-1.454
	0.000	0.000	0.000	0.000	0.000	0.000	0.000
213.0	-1.454	-1.626	-1.488	-0.811	-1.488	-1.626	-1.454
215.1	-1.698	-1.838	-1.706	-1.071	-1.706	-1.838	-1.698
217.2	-1.917	-2.029	-1.902	-1.306	-1.902	-2.029	-1.917
219.3	-2.116	-2.201	-2.079	-1.519	-2.079	-2.201	-2.116
221.4	-2.296	-2.356	-2.238	-1.712	-2.238	-2.356	-2.296
223.5	-2.458	-2.496	-2.382	-1.887	-2.382	-2.496	-2.458
225.6	-2.605	-2.622	-2.512	-2.045	-2.512	-2.622	-2.605
227.7	-2.738	-2.736	-2.630	-2.187	-2.630	-2.736	-2.738
229.8	-2.858	-2.841	-2.737	-2.316	-2.737	-2.841	-2.858
231.9	-2.967	-2.935	-2.834	-2.432	-2.834	-2.935	-2.967
234.0	-3.064	-3.021	-2.922	-2.536	-2.922	-3.021	-3.064
	0.000	0.000	0.000	0.000	0.000	0.000	0.000
234.0	-3.064	-3.018	-2.920	-2.538	-2.920	-3.018	-3.064
236.1	-3.153	-3.095	-2.999	-2.633	-2.999	-3.095	-3.153
238.2	-3.233	-3.164	-3.070	-2.718	-3.070	-3.164	-3.233
240.3	-3.306	-3.227	-3.135	-2.796	-3.135	-3.227	-3.306
242.4	-3.371	-3.283	-3.193	-2.866	-3.193	-3.283	-3.371
244.5	-3.429	-3.334	-3.245	-2.929	-3.245	-3.334	-3.429
246.6	-3.482	-3.379	-3.292	-2.986	-3.292	-3.379	-3.482
248.7	-3.530	-3.420	-3.334	-3.037	-3.334	-3.420	-3.530
250.8	-3.573	-3.458	-3.372	-3.083	-3.372	-3.458	-3.573
252.9	-3.612	-3.492	-3.407	-3.124	-3.407	-3.492	-3.612
255.0	-3.646	-3.522	-3.438	-3.161	-3.438	-3.522	-3.646

	0.000	0.000	0.000	0.000	0.000	0.000 0.000
255.0	-3.646	-3.520	-3.437	-3.161	-3.437	-3.520 -3.646
257.1	-3.678	-3.548	-3.465	-3.195	-3.465	-3.548 -3.678
259.2	-3.705	-3.572	-3.490	-3.225	-3.490	-3.572 -3.705
261.3	-3.730	-3.594	-3.512	-3.252	-3.512	-3.594 -3.730
263.4	-3.753	-3.613	-3.532	-3.275	-3.532	-3.613 -3.753
265.5	-3.772	-3.629	-3.549	-3.296	-3.549	-3.629 -3.772
267.6	-3.789	-3.644	-3.564	-3.315	-3.564	-3.644 -3.789
269.7	-3.804	-3.657	-3.578	-3.331	-3.578	-3.657 -3.804
271.8	-3.817	-3.668	-3.589	-3.345	-3.589	-3.668 -3.817
273.9	-3.829	-3.678	-3.599	-3.357	-3.599	-3.678 -3.829
276.0	-3.838	-3.687	-3.608	-3.367	-3.608	-3.687 -3.838
	0.000	0.000	0.000	0.000	0.000	0.000 0.000
276.0	-3.838	-3.686	-3.607	-3.367	-3.607	-3.686 -3.838
278.1	-3.846	-3.693	-3.614	-3.375	-3.614	-3.693 -3.846
280.2	-3.852	-3.698	-3.620	-3.382	-3.620	-3.698 -3.852
282.3	-3.857	-3.702	-3.624	-3.387	-3.624	-3.702 -3.857
284.4	-3.859	-3.705	-3.627	-3.390	-3.627	-3.705 -3.859
286.5	-3.861	-3.706	-3.628	-3.392	-3.628	-3.706 -3.861
288.6	-3.862	-3.707	-3.629	-3.393	-3.629	-3.707 -3.862
290.7	-3.861	-3.706	-3.628	-3.391	-3.628	-3.706 -3.861
292.8	-3.858	-3.704	-3.626	-3.389	-3.626	-3.704 -3.858
294.9	-3.854	-3.700	-3.622	-3.385	-3.622	-3.700 -3.854
297.0	-3.849	-3.696	-3.617	-3.379	-3.617	-3.696 -3.849
	0.000	0.000	0.000	0.000	0.000	0.000 0.000
297.0	-3.849	-3.696	-3.617	-3.379	-3.617	-3.696 -3.849
299.1	-3.842	-3.690	-3.611	-3.371	-3.611	-3.690 -3.842
301.2	-3.833	-3.682	-3.603	-3.362	-3.603	-3.682 -3.833
303.3	-3.823	-3.673	-3.594	-3.351	-3.594	-3.673 -3.823
305.4	-3.811	-3.663	-3.583	-3.338	-3.583	-3.663 -3.811
307.5	-3.797	-3.651	-3.571	-3.323	-3.571	-3.651 -3.797
309.6	-3.780	-3.637	-3.556	-3.305	-3.556	-3.637 -3.780
311.7	-3.762	-3.621	-3.540	-3.286	-3.540	-3.621 -3.762
313.8	-3.742	-3.603	-3.522	-3.264	-3.522	-3.603 -3.742
315.9	-3.718	-3.582	-3.501	-3.238	-3.501	-3.582 -3.718
318.0	-3.692	-3.560	-3.477	-3.210	-3.477	-3.560 -3.692
	0.000	0.000	0.000	0.000	0.000	0.000 0.000
318.0	-3.692	-3.561	-3.478	-3.210	-3.478	-3.561 -3.692
320.1	-3.662	-3.535	-3.451	-3.178	-3.451	-3.535 -3.662
322.2	-3.629	-3.506	-3.422	-3.143	-3.422	-3.506 -3.629
324.3	-3.593	-3.475	-3.390	-3.104	-3.390	-3.475 -3.593
326.4	-3.552	-3.439	-3.353	-3.060	-3.353	-3.439 -3.552

328.5 -3.507	-3.400	-3.313	-3.012	-3.313	-3.400 -3.507
330.6 -3.456	-3.357	-3.268	-2.957	-3.268	-3.357 -3.456
332.7 -3.400	-3.309	-3.219	-2.898	-3.219	-3.309 -3.400
334.8 -3.338	-3.255	-3.164	-2.831	-3.164	-3.255 -3.338
336.9 -3.270	-3.196	-3.103	-2.757	-3.103	-3.196 -3.270
339.0 -3.193	-3.129	-3.034	-2.676	-3.034	-3.129 -3.193
0.000	0.000	0.000	0.000	0.000	0.000 0.000
339.0 -3.193	-3.132	-3.037	-2.675	-3.037	-3.132 -3.193
341.1 -3.109	-3.058	-2.961	-2.585	-2.961	-3.058 -3.109
343.2 -3.016	-2.977	-2.878	-2.485	-2.878	-2.977 -3.016
345.3 -2.913	-2.887	-2.785	-2.375	-2.785	-2.887 -2.913
347.4 -2.799	-2.789	-2.684	-2.252	-2.684	-2.789 -2.799
349.5 -2.672	-2.680	-2.572	-2.116	-2.572	-2.680 -2.672
351.6 -2.533	-2.560	-2.449	-1.967	-2.449	-2.560 -2.533
353.7 -2.378	-2.426	-2.311	-1.800	-2.311	-2.426 -2.378
355.8 -2.207	-2.279	-2.159	-1.617	-2.159	-2.279 -2.207
357.9 -2.017	-2.114	-1.990	-1.414	-1.990	-2.114 -2.017
360.0 -1.808	-1.932	-1.803	-1.190	-1.803	-1.932 -1.808
				0.000	0.000 0.000
360.0 -1.808	-1.588	-1.676	-2.197	-1.676	-1.588 -1.808
362.0 -1.609	-1 415	-1 498	-1 984	-1 498	-1 415 -1 609
502.0 1.009	1.115	1.170	1.701	1.470	1.415 1.007
364.0 -1.427	-1.257	-1.336	-1.789	-1.336	-1.257 -1.427
364.0 -1.427 366.0 -1.262	-1.257 -1.114	-1.336 -1.189	-1.789 -1.612	-1.336 -1.189	-1.257 -1.427 -1.114 -1.262
364.0 -1.427 366.0 -1.262 368.0 -1.112	-1.257 -1.114 -0.985	-1.336 -1.189 -1.056	-1.789 -1.612 -1.451	-1.336 -1.189 -1.056	-1.257 -1.427 -1.114 -1.262 -0.985 -1.112
364.0 -1.427 366.0 -1.262 368.0 -1.112 370.0 -0.976	-1.257 -1.114 -0.985 -0.868	-1.336 -1.189 -1.056 -0.935	-1.789 -1.612 -1.451 -1.305	-1.336 -1.189 -1.056 -0.935	-1.257 -1.427 -1.114 -1.262 -0.985 -1.112 -0.868 -0.976
364.0 -1.427 366.0 -1.262 368.0 -1.112 370.0 -0.976 372.0 -0.852	-1.257 -1.114 -0.985 -0.868 -0.761	-1.336 -1.189 -1.056 -0.935 -0.826	-1.789 -1.612 -1.451 -1.305 -1.172	-1.336 -1.189 -1.056 -0.935 -0.826	-1.257 -1.427 -1.114 -1.262 -0.985 -1.112 -0.868 -0.976 -0.761 -0.852
364.0 -1.427 366.0 -1.262 368.0 -1.112 370.0 -0.976 372.0 -0.852 374.0 -0.739	-1.257 -1.114 -0.985 -0.868 -0.761 -0.664	-1.336 -1.189 -1.056 -0.935 -0.826 -0.725	-1.789 -1.612 -1.451 -1.305 -1.172 -1.052	-1.336 -1.189 -1.056 -0.935 -0.826 -0.725	-1.257 -1.427 -1.114 -1.262 -0.985 -1.112 -0.868 -0.976 -0.761 -0.852 -0.664 -0.739
364.0 -1.427 366.0 -1.262 368.0 -1.112 370.0 -0.976 372.0 -0.852 374.0 -0.739 376.0 -0.637	-1.257 -1.114 -0.985 -0.868 -0.761 -0.664 -0.575	-1.336 -1.189 -1.056 -0.935 -0.826 -0.725 -0.634	-1.789 -1.612 -1.451 -1.305 -1.172 -1.052 -0.942	-1.336 -1.189 -1.056 -0.935 -0.826 -0.725 -0.634	-1.257 -1.427 -1.114 -1.262 -0.985 -1.112 -0.868 -0.976 -0.761 -0.852 -0.664 -0.739 -0.575 -0.637
364.0 -1.427 366.0 -1.262 368.0 -1.112 370.0 -0.976 372.0 -0.852 374.0 -0.739 376.0 -0.637 378.0 -0.544	-1.257 -1.114 -0.985 -0.868 -0.761 -0.664 -0.575 -0.495	-1.336 -1.189 -1.056 -0.935 -0.826 -0.725 -0.634 -0.552	-1.789 -1.612 -1.451 -1.305 -1.172 -1.052 -0.942 -0.843	-1.336 -1.189 -1.056 -0.935 -0.826 -0.725 -0.634 -0.552	-1.257 -1.427 -1.114 -1.262 -0.985 -1.112 -0.868 -0.976 -0.761 -0.852 -0.664 -0.739 -0.575 -0.637 -0.495 -0.544
364.0 -1.427 366.0 -1.262 368.0 -1.112 370.0 -0.976 372.0 -0.852 374.0 -0.739 376.0 -0.637 378.0 -0.544 380.0 -0.460	-1.257 -1.114 -0.985 -0.868 -0.761 -0.664 -0.575 -0.495 -0.421	-1.336 -1.189 -1.056 -0.935 -0.826 -0.725 -0.634 -0.552 -0.475	-1.789 -1.612 -1.451 -1.305 -1.172 -1.052 -0.942 -0.843 -0.752	-1.336 -1.189 -1.056 -0.935 -0.826 -0.725 -0.634 -0.552 -0.475	-1.257 -1.427 -1.114 -1.262 -0.985 -1.112 -0.868 -0.976 -0.761 -0.852 -0.664 -0.739 -0.575 -0.637 -0.495 -0.544 -0.421 -0.460
364.0 -1.427 366.0 -1.262 368.0 -1.112 370.0 -0.976 372.0 -0.852 374.0 -0.739 376.0 -0.637 378.0 -0.544 380.0 -0.460	-1.257 -1.114 -0.985 -0.868 -0.761 -0.664 -0.575 -0.495 -0.421 0.000	-1.336 -1.189 -1.056 -0.935 -0.826 -0.725 -0.634 -0.552 -0.475 0.000	-1.789 -1.612 -1.451 -1.305 -1.172 -1.052 -0.942 -0.843 -0.752 0.000	-1.336 -1.189 -1.056 -0.935 -0.826 -0.725 -0.634 -0.552 -0.475 0.000	-1.413 1.003 -1.257 -1.427 -1.114 -1.262 -0.985 -1.112 -0.868 -0.976 -0.761 -0.852 -0.664 -0.739 -0.575 -0.637 -0.495 -0.544 -0.421 -0.460 0.000 0.000
$\begin{array}{c} 364.0 & -1.427 \\ 366.0 & -1.262 \\ 368.0 & -1.112 \\ 370.0 & -0.976 \\ 372.0 & -0.852 \\ 374.0 & -0.739 \\ 376.0 & -0.637 \\ 378.0 & -0.544 \\ 380.0 & -0.460 \\ \hline 0.000 \\ 380.0 & -0.460 \\ \end{array}$	-1.257 -1.114 -0.985 -0.868 -0.761 -0.664 -0.575 -0.495 -0.421 0.000 -0.423	-1.336 -1.189 -1.056 -0.935 -0.826 -0.725 -0.634 -0.552 -0.475 0.000 -0.478	-1.789 -1.612 -1.451 -1.305 -1.172 -1.052 -0.942 -0.843 -0.752 0.000 -0.751	-1.336 -1.189 -1.056 -0.935 -0.826 -0.725 -0.634 -0.552 -0.475 0.000 -0.478	-1.415 1.005 -1.257 -1.427 -1.114 -1.262 -0.985 -1.112 -0.868 -0.976 -0.761 -0.852 -0.664 -0.739 -0.575 -0.637 -0.495 -0.544 -0.421 -0.460 0.000 0.000 -0.423 -0.460
$\begin{array}{c} 364.0 & -1.427 \\ 366.0 & -1.262 \\ 368.0 & -1.112 \\ 370.0 & -0.976 \\ 372.0 & -0.852 \\ 374.0 & -0.739 \\ 376.0 & -0.637 \\ 378.0 & -0.544 \\ 380.0 & -0.460 \\ \hline 0.000 \\ 380.0 & -0.460 \\ 382.0 & -0.383 \\ \end{array}$	-1.257 -1.114 -0.985 -0.868 -0.761 -0.664 -0.575 -0.495 -0.421 0.000 -0.423 -0.356	-1.336 -1.189 -1.056 -0.935 -0.826 -0.725 -0.634 -0.552 -0.475 0.000 -0.478 -0.409	-1.789 -1.612 -1.451 -1.305 -1.172 -1.052 -0.942 -0.843 -0.752 0.000 -0.751 -0.669	-1.336 -1.189 -1.056 -0.935 -0.826 -0.725 -0.634 -0.552 -0.475 0.000 -0.478 -0.409	-1.413 1.003 -1.257 -1.427 -1.114 -1.262 -0.985 -1.112 -0.868 -0.976 -0.761 -0.852 -0.664 -0.739 -0.575 -0.637 -0.495 -0.544 -0.421 -0.460 0.000 0.000 -0.423 -0.460
$\begin{array}{c} 364.0 & -1.427 \\ 366.0 & -1.262 \\ 368.0 & -1.112 \\ 370.0 & -0.976 \\ 372.0 & -0.852 \\ 374.0 & -0.739 \\ 376.0 & -0.637 \\ 378.0 & -0.544 \\ 380.0 & -0.460 \\ \hline 0.000 \\ 380.0 & -0.460 \\ \hline 382.0 & -0.383 \\ 384.0 & -0.313 \\ \hline \end{array}$	$\begin{array}{c} -1.257 \\ -1.257 \\ -0.985 \\ -0.868 \\ -0.761 \\ -0.664 \\ -0.575 \\ -0.495 \\ -0.421 \\ 0.000 \\ -0.423 \\ -0.356 \\ -0.296 \end{array}$	-1.336 -1.189 -1.056 -0.935 -0.826 -0.725 -0.634 -0.552 -0.475 0.000 -0.478 -0.409 -0.347	-1.789 -1.612 -1.451 -1.305 -1.172 -1.052 -0.942 -0.843 -0.752 0.000 -0.751 -0.669 -0.595	-1.336 -1.189 -1.056 -0.935 -0.826 -0.725 -0.634 -0.552 -0.475 0.000 -0.478 -0.409 -0.347	-1.257 -1.427 -1.114 -1.262 -0.985 -1.112 -0.868 -0.976 -0.761 -0.852 -0.664 -0.739 -0.575 -0.637 -0.495 -0.544 -0.421 -0.460 0.000 0.000 -0.356 -0.383 -0.296 -0.313
$\begin{array}{c} 364.0 & -1.427 \\ 366.0 & -1.262 \\ 368.0 & -1.112 \\ 370.0 & -0.976 \\ 372.0 & -0.852 \\ 374.0 & -0.739 \\ 376.0 & -0.637 \\ 378.0 & -0.544 \\ 380.0 & -0.460 \\ \hline 0.000 \\ 380.0 & -0.460 \\ \hline 382.0 & -0.383 \\ 384.0 & -0.313 \\ 386.0 & -0.250 \\ \end{array}$	$\begin{array}{c} -1.257\\ -1.257\\ -0.985\\ -0.868\\ -0.761\\ -0.664\\ -0.575\\ -0.495\\ -0.421\\ 0.000\\ -0.423\\ -0.356\\ -0.296\\ -0.241\end{array}$	-1.336 -1.189 -1.056 -0.935 -0.826 -0.725 -0.634 -0.552 -0.475 0.000 -0.478 -0.409 -0.347 -0.290	-1.789 -1.612 -1.451 -1.305 -1.172 -1.052 -0.942 -0.843 -0.752 0.000 -0.751 -0.669 -0.595 -0.527	-1.336 -1.189 -1.056 -0.935 -0.826 -0.725 -0.634 -0.552 -0.475 0.000 -0.478 -0.409 -0.347 -0.290	-1.257 -1.427 -1.114 -1.262 -0.985 -1.112 -0.868 -0.976 -0.761 -0.852 -0.664 -0.739 -0.575 -0.637 -0.421 -0.460 0.000 0.000 -0.423 -0.460 -0.356 -0.383 -0.296 -0.313
$\begin{array}{c} 364.0 & -1.427 \\ 366.0 & -1.262 \\ 368.0 & -1.112 \\ 370.0 & -0.976 \\ 372.0 & -0.852 \\ 374.0 & -0.739 \\ 376.0 & -0.637 \\ 378.0 & -0.544 \\ 380.0 & -0.460 \\ \hline 0.000 \\ 380.0 & -0.460 \\ \hline 382.0 & -0.383 \\ 384.0 & -0.313 \\ 386.0 & -0.250 \\ 388.0 & -0.192 \\ \end{array}$	$\begin{array}{c} -1.257\\ -1.257\\ -0.985\\ -0.868\\ -0.761\\ -0.664\\ -0.575\\ -0.495\\ -0.421\\ 0.000\\ -0.423\\ -0.356\\ -0.296\\ -0.241\\ -0.192\end{array}$	-1.336 -1.189 -1.056 -0.935 -0.826 -0.725 -0.634 -0.552 -0.475 0.000 -0.478 -0.409 -0.347 -0.290 -0.239	-1.789 -1.612 -1.451 -1.305 -1.172 -1.052 -0.942 -0.843 -0.752 0.000 -0.751 -0.669 -0.595 -0.527 -0.465	-1.336 -1.189 -1.056 -0.935 -0.826 -0.725 -0.634 -0.552 -0.475 0.000 -0.478 -0.409 -0.347 -0.290 -0.239	-1.415 1.605 -1.257 -1.427 -1.114 -1.262 -0.985 -1.112 -0.868 -0.976 -0.761 -0.852 -0.664 -0.739 -0.575 -0.637 -0.495 -0.544 -0.421 -0.460 0.000 0.000 -0.356 -0.383 -0.296 -0.313 -0.241 -0.250 -0.192 -0.192
$\begin{array}{c} 364.0 & -1.427 \\ 366.0 & -1.262 \\ 368.0 & -1.112 \\ 370.0 & -0.976 \\ 372.0 & -0.852 \\ 374.0 & -0.739 \\ 376.0 & -0.637 \\ 378.0 & -0.544 \\ 380.0 & -0.460 \\ \hline 0.000 \\ 380.0 & -0.460 \\ \hline 382.0 & -0.383 \\ 384.0 & -0.313 \\ 386.0 & -0.250 \\ 388.0 & -0.192 \\ 390.0 & -0.140 \end{array}$	$\begin{array}{c} -1.257\\ -1.257\\ -0.985\\ -0.868\\ -0.761\\ -0.664\\ -0.575\\ -0.495\\ -0.421\\ 0.000\\ -0.423\\ -0.356\\ -0.296\\ -0.241\\ -0.192\\ -0.146\end{array}$	-1.336 -1.189 -1.056 -0.935 -0.826 -0.725 -0.634 -0.552 -0.475 0.000 -0.478 -0.409 -0.347 -0.290 -0.239 -0.193	-1.789 -1.612 -1.451 -1.305 -1.172 -1.052 -0.942 -0.843 -0.752 0.000 -0.751 -0.669 -0.595 -0.527 -0.465 -0.409	-1.336 -1.189 -1.056 -0.935 -0.826 -0.725 -0.634 -0.552 -0.475 0.000 -0.478 -0.409 -0.347 -0.290 -0.239 -0.193	-1.257 -1.427 -1.114 -1.262 -0.985 -1.112 -0.868 -0.976 -0.761 -0.852 -0.664 -0.739 -0.575 -0.637 -0.421 -0.460 0.000 0.000 -0.423 -0.460 0.000 0.000 -0.423 -0.460 -0.296 -0.313 -0.241 -0.250 -0.192 -0.192
$\begin{array}{c} 364.0 & -1.427 \\ 366.0 & -1.262 \\ 368.0 & -1.112 \\ 370.0 & -0.976 \\ 372.0 & -0.852 \\ 374.0 & -0.739 \\ 376.0 & -0.637 \\ 378.0 & -0.544 \\ 380.0 & -0.460 \\ \hline 0.000 \\ 380.0 & -0.460 \\ \hline 382.0 & -0.383 \\ 384.0 & -0.313 \\ 386.0 & -0.250 \\ 388.0 & -0.192 \\ 390.0 & -0.140 \\ 392.0 & -0.092 \\ \end{array}$	-1.257 -1.114 -0.985 -0.868 -0.761 -0.664 -0.575 -0.495 -0.495 -0.421 0.000 -0.423 -0.356 -0.296 -0.241 -0.192 -0.146 -0.106	-1.336 -1.189 -1.056 -0.935 -0.826 -0.725 -0.634 -0.552 -0.475 0.000 -0.478 -0.409 -0.347 -0.290 -0.239 -0.193 -0.151	-1.789 -1.612 -1.451 -1.305 -1.172 -1.052 -0.942 -0.843 -0.752 0.000 -0.751 -0.669 -0.595 -0.527 -0.465 -0.409 -0.358	-1.336 -1.189 -1.056 -0.935 -0.826 -0.725 -0.634 -0.552 -0.475 0.000 -0.478 -0.409 -0.347 -0.290 -0.239 -0.193 -0.151	-1.257 -1.427 -1.114 -1.262 -0.985 -1.112 -0.868 -0.976 -0.761 -0.852 -0.664 -0.739 -0.575 -0.637 -0.495 -0.544 -0.421 -0.460 0.000 0.000 -0.356 -0.383 -0.296 -0.313 -0.241 -0.250 -0.192 -0.192 -0.146 -0.140 -0.106 -0.092
$\begin{array}{c} 364.0 & -1.427 \\ 366.0 & -1.262 \\ 368.0 & -1.112 \\ 370.0 & -0.976 \\ 372.0 & -0.852 \\ 374.0 & -0.739 \\ 376.0 & -0.637 \\ 378.0 & -0.637 \\ 378.0 & -0.544 \\ 380.0 & -0.460 \\ \hline 0.000 \\ 380.0 & -0.460 \\ \hline 382.0 & -0.383 \\ 384.0 & -0.313 \\ 384.0 & -0.313 \\ 386.0 & -0.250 \\ 388.0 & -0.192 \\ 390.0 & -0.140 \\ 392.0 & -0.092 \\ 394.0 & -0.049 \\ \end{array}$	$\begin{array}{c} -1.257\\ -1.257\\ -0.985\\ -0.868\\ -0.761\\ -0.664\\ -0.575\\ -0.495\\ -0.421\\ 0.000\\ -0.423\\ -0.356\\ -0.296\\ -0.241\\ -0.192\\ -0.146\\ -0.106\\ -0.068\end{array}$	-1.336 -1.189 -1.056 -0.935 -0.826 -0.725 -0.634 -0.552 -0.475 0.000 -0.478 -0.409 -0.347 -0.290 -0.239 -0.239 -0.193 -0.151 -0.113	-1.789 -1.612 -1.451 -1.305 -1.172 -1.052 -0.942 -0.843 -0.752 0.000 -0.751 -0.669 -0.595 -0.527 -0.465 -0.409 -0.358 -0.311	-1.336 -1.189 -1.056 -0.935 -0.826 -0.725 -0.634 -0.552 -0.475 0.000 -0.478 -0.409 -0.347 -0.290 -0.239 -0.239 -0.193 -0.151 -0.113	-1.257 -1.427 -1.114 -1.262 -0.985 -1.112 -0.868 -0.976 -0.761 -0.852 -0.664 -0.739 -0.575 -0.637 -0.495 -0.544 -0.421 -0.460 0.000 0.000 -0.356 -0.383 -0.296 -0.313 -0.241 -0.250 -0.192 -0.192 -0.146 -0.140 -0.106 -0.092 -0.1068 -0.049
$\begin{array}{c} 364.0 & -1.427 \\ 366.0 & -1.262 \\ 368.0 & -1.112 \\ 370.0 & -0.976 \\ 372.0 & -0.852 \\ 374.0 & -0.739 \\ 376.0 & -0.637 \\ 378.0 & -0.544 \\ 380.0 & -0.544 \\ 380.0 & -0.460 \\ \hline 0.000 \\ 380.0 & -0.460 \\ \hline 382.0 & -0.383 \\ 384.0 & -0.313 \\ 386.0 & -0.250 \\ 388.0 & -0.250 \\ 388.0 & -0.192 \\ 390.0 & -0.140 \\ 392.0 & -0.049 \\ 394.0 & -0.049 \\ 396.0 & -0.010 \\ \hline \end{array}$	$\begin{array}{c} -1.257\\ -1.257\\ -0.985\\ -0.868\\ -0.761\\ -0.664\\ -0.575\\ -0.495\\ -0.495\\ -0.421\\ 0.000\\ -0.423\\ -0.356\\ -0.296\\ -0.241\\ -0.192\\ -0.146\\ -0.106\\ -0.068\\ -0.034\\ \end{array}$	-1.336 -1.189 -1.056 -0.935 -0.826 -0.725 -0.634 -0.552 -0.475 0.000 -0.478 -0.409 -0.409 -0.347 -0.290 -0.239 -0.193 -0.151 -0.113 -0.078	-1.789 -1.612 -1.451 -1.305 -1.172 -1.052 -0.942 -0.843 -0.752 0.000 -0.751 -0.669 -0.595 -0.527 -0.465 -0.409 -0.358 -0.311 -0.269	-1.336 -1.189 -1.056 -0.935 -0.826 -0.725 -0.634 -0.552 -0.475 0.000 -0.478 -0.409 -0.409 -0.347 -0.290 -0.239 -0.193 -0.151 -0.113 -0.078	-1.415 1.005 -1.257 -1.427 -1.114 -1.262 -0.985 -1.112 -0.868 -0.976 -0.761 -0.852 -0.664 -0.739 -0.575 -0.637 -0.495 -0.544 -0.421 -0.460 0.000 0.000 -0.423 -0.460 0.000 0.000 -0.356 -0.383 -0.296 -0.313 -0.241 -0.250 -0.192 -0.192 -0.146 -0.140 -0.106 -0.092 -0.068 -0.049
$\begin{array}{c} 364.0 & -1.427 \\ 366.0 & -1.262 \\ 368.0 & -1.112 \\ 370.0 & -0.976 \\ 372.0 & -0.852 \\ 374.0 & -0.739 \\ 376.0 & -0.637 \\ 378.0 & -0.637 \\ 378.0 & -0.544 \\ 380.0 & -0.460 \\ \hline 0.000 \\ 380.0 & -0.460 \\ \hline 382.0 & -0.383 \\ 384.0 & -0.313 \\ 386.0 & -0.250 \\ 388.0 & -0.250 \\ 388.0 & -0.192 \\ 390.0 & -0.140 \\ 392.0 & -0.092 \\ 394.0 & -0.049 \\ 396.0 & -0.010 \\ 398.0 & 0.026 \\ \end{array}$	$\begin{array}{c} -1.257\\ -1.257\\ -1.114\\ -0.985\\ -0.868\\ -0.761\\ -0.664\\ -0.575\\ -0.495\\ -0.421\\ 0.000\\ -0.423\\ -0.356\\ -0.296\\ -0.241\\ -0.192\\ -0.146\\ -0.106\\ -0.068\\ -0.034\\ -0.003\end{array}$	-1.336 -1.189 -1.056 -0.935 -0.826 -0.725 -0.634 -0.552 -0.475 0.000 -0.478 -0.409 -0.347 -0.290 -0.347 -0.290 -0.239 -0.193 -0.151 -0.113 -0.078 -0.046	-1.789 -1.612 -1.451 -1.305 -1.172 -1.052 -0.942 -0.843 -0.752 0.000 -0.751 -0.669 -0.595 -0.527 -0.465 -0.409 -0.358 -0.311 -0.269 -0.231	-1.336 -1.189 -1.056 -0.935 -0.826 -0.725 -0.634 -0.552 -0.475 0.000 -0.478 -0.409 -0.347 -0.290 -0.239 -0.193 -0.151 -0.113 -0.078 -0.046	-1.415 1.005 -1.257 -1.427 -1.114 -1.262 -0.985 -1.112 -0.868 -0.976 -0.761 -0.852 -0.664 -0.739 -0.575 -0.637 -0.495 -0.544 -0.421 -0.460 0.000 0.000 -0.423 -0.460 -0.356 -0.383 -0.296 -0.313 -0.241 -0.250 -0.192 -0.192 -0.146 -0.140 -0.106 -0.092 -0.068 -0.049 -0.034 -0.010

	0.000	0.000	0.000	0.000	0.000	0.000	0.000
400.0	0.058	0.024	-0.017	-0.196	-0.017	0.024	0.058
402.0	0.088	0.050	0.009	-0.165	0.009	0.050	0.088
404.0	0.114	0.073	0.033	-0.136	0.033	0.073	0.114
406.0	0.139	0.094	0.055	-0.110	0.055	0.094	0.139
408.0	0.161	0.113	0.074	-0.086	0.074	0.113	0.161
410.0	0.181	0.130	0.092	-0.064	0.092	0.130	0.181
412.0	0.199	0.146	0.108	-0.045	0.108	0.146	0.199
414.0	0.216	0.160	0.123	-0.027	0.123	0.160	0.216
416.0	0.231	0.173	0.136	-0.011	0.136	0.173	0.231
418.0	0.244	0.185	0.148	0.004	0.148	0.185	0.244
420.0	0.257	0.196	0.160	0.017	0.160	0.196	0.257
	0.000	0.000	0.000	0.000	0.000	0.000	0.000
420.0	0.257	0.196	0.159	0.017	0.159	0.196	0.257
422.0	0.268	0.206	0.169	0.029	0.169	0.206	0.268
424.0	0.278	0.215	0.179	0.040	0.179	0.215	0.278
426.0	0.288	0.223	0.187	0.050	0.187	0.223	0.288
428.0	0.296	0.230	0.194	0.059	0.194	0.230	0.296
430.0	0.304	0.236	0.201	0.067	0.201	0.236	0.304
432.0	0.311	0.242	0.207	0.075	0.207	0.242	0.311
434.0	0.317	0.248	0.213	0.082	0.213	0.248	0.317
436.0	0.323	0.253	0.218	0.088	0.218	0.253	0.323
438.0	0.328	0.257	0.223	0.093	0.223	0.257	0.328
440.0	0.333	0.262	0.227	0.098	0.227	0.262	0.333
	0.000	0.000	0.000	0.000	0.000	0.000	0.000
440.0	0.333	0.261	0.227	0.098	0.227	0.261	0.333
442.0	0.337	0.265	0.230	0.103	0.230	0.265	0.337
444.0	0.341	0.268	0.234	0.107	0.234	0.268	0.341
446.0	0.344	0.271	0.237	0.111	0.237	0.271	0.344
448.0	0.347	0.274	0.240	0.114	0.240	0.274	0.347
450.0	0.350	0.277	0.242	0.117	0.242	0.277	0.350
452.0	0.353	0.279	0.244	0.120	0.244	0.279	0.353
454.0	0.355	0.281	0.246	0.122	0.246	0.281	0.355
456.0	0.357	0.282	0.248	0.124	0.248	0.282	0.357
458.0	0.359	0.284	0.250	0.126	0.250	0.284	0.359
460.0	0.360	0.285	0.251	0.128	0.251	0.285	0.360
	0.000	0.000	0.000	0.000	0.000	0.000	0.000
460.0	0.360	0.285	0.251	0.128	0.251	0.285	0.360
462.0	0.362	0.286	0.253	0.130	0.253	0.286	0.362
464.0	0.363	0.288	0.254	0.131	0.254	0.288	0.363
466.0	0.364	0.288	0.255	0.132	0.255	0.288	0.364
468.0	0.365	0.289	0.255	0.133	0.255	0.289	0.365

470.0	0.366	0.290	0.256	0.134	0.256	0.290	0.366
472.0	0.366	0.290	0.257	0.134	0.257	0.290	0.366
474.0	0.367	0.291	0.257	0.135	0.257	0.291	0.367
476.0	0.367	0.291	0.257	0.135	0.257	0.291	0.367
478.0	0.367	0.291	0.257	0.135	0.257	0.291	0.367
480.0	0.367	0.291	0.258	0.136	0.258	0.291	0.367

Total Shear with Negative St. Vt. Contribution

-			0				
Z	Combin	ed Shea	ar Stress	s with N	Vegative	e St. Vt.	
0.0	0.901	1.031	1.090	1.330	1.090	1.031	0.901
2.0	0.901	1.031	1.089	1.329	1.089	1.031	0.901
4.0	0.900	1.030	1.089	1.329	1.089	1.030	0.900
6.0	0.900	1.029	1.088	1.328	1.088	1.029	0.900
8.0	0.898	1.028	1.087	1.327	1.087	1.028	0.898
10.0	0.897	1.027	1.085	1.326	1.085	1.027	0.897
12.0	0.895	1.024	1.083	1.324	1.083	1.024	0.895
14.0	0.893	1.022	1.081	1.322	1.081	1.022	0.893
16.0	0.890	1.019	1.078	1.319	1.078	1.019	0.890
18.0	0.887	1.016	1.075	1.317	1.075	1.016	0.887
20.0	0.884	1.012	1.071	1.313	1.071	1.012	0.884
	0.000	0.000	0.000	0.000	0.000	0.000	0.000
20.0	0.884	1.011	1.071	1.313	1.071	1.011	0.884
22.0	0.880	1.008	1.067	1.310	1.067	1.008	0.880
24.0	0.876	1.002	1.062	1.305	1.062	1.002	0.876
26.0	0.871	0.996	1.056	1.300	1.056	0.996	0.871
28.0	0.865	0.990	1.050	1.295	1.050	0.990	0.865
30.0	0.859	0.983	1.043	1.289	1.043	0.983	0.859
32.0	0.852	0.975	1.035	1.282	1.035	0.975	0.852
34.0	0.844	0.967	1.027	1.275	1.027	0.967	0.844
36.0	0.836	0.957	1.017	1.267	1.017	0.957	0.836
38.0	0.826	0.946	1.007	1.258	1.007	0.946	0.826
40.0	0.816	0.934	0.995	1.248	0.995	0.934	0.816
	0.000	0.000	0.000	0.000	0.000	0.000	0.000
40.0	0.816	0.934	0.995	1.248	0.995	0.934	0.816
42.0	0.805	0.922	0.983	1.237	0.983	0.922	0.805
44.0	0.792	0.907	0.969	1.225	0.969	0.907	0.792
46.0	0.778	0.891	0.953	1.211	0.953	0.891	0.778
48.0	0.762	0.873	0.936	1.196	0.936	0.873	0.762
50.0	0.746	0.854	0.917	1.180	0.917	0.854	0.746
52.0	0.726	0.832	0.895	1.161	0.895	0.832	0.726
54.0	0.706	0.809	0.873	1.142	0.873	0.809	0.706
56.0	0.683	0.783	0.847	1.119	0.847	0.783	0.683
58.0	0.658	0.755	0.819	1.095	0.819	0.755	0.658

60.0	0.630	0.723	0.789	1.068	0.789	0.723	0.630
	0.000	0.000	0.000	0.000	0.000	0.000	0.000
60.0	0.630	0.722	0.788	1.069	0.788	0.722	0.630
62.0	0.600	0.688	0.754	1.040	0.754	0.688	0.600
64.0	0.566	0.650	0.717	1.007	0.717	0.650	0.566
66.0	0.529	0.608	0.676	0.972	0.676	0.608	0.529
68.0	0.489	0.562	0.631	0.932	0.631	0.562	0.489
70.0	0.444	0.511	0.581	0.889	0.581	0.511	0.444
72.0	0.395	0.455	0.526	0.842	0.526	0.455	0.395
74.0	0.340	0.393	0.466	0.790	0.466	0.393	0.340
76.0	0.281	0.326	0.400	0.732	0.400	0.326	0.281
78.0	0.215	0.251	0.327	0.669	0.327	0.251	0.215
80.0	0.143	0.170	0.247	0.599	0.247	0.170	0.143
	0.000	0.000	0.000	0.000	0.000	0.000	0.000
80.0	0.143	0.167	0.245	0.600	0.245	0.167	0.143
82.0	0.063	0.078	0.158	0.523	0.158	0.078	0.063
84.0	-0.024	-0.021	0.061	0.438	0.061	-0.021	-0.024
86.0	-0.121	-0.130	-0.046	0.345	-0.046	-0.130	-0.121
88.0	-0.227	-0.251	-0.164	0.243	-0.164	-0.251	-0.227
90.0	-0.343	-0.384	-0.294	0.131	-0.294	-0.384	-0.343
92.0	-0.472	-0.530	-0.437	0.008	-0.437	-0.530	-0.472
94.0	-0.613	-0.691	-0.594	-0.129	-0.594	-0.691	-0.613
96.0	-0.768	-0.867	-0.767	-0.278	-0.767	-0.867	-0.768
98.0	-0.940	-1.061	-0.957	-0.443	-0.957	-1.061	-0.940
100.0	-1.127	-1.273	-1.164	-0.625	-1.164	-1.273	-1.127
	0.000	0.000	0.000	0.000	0.000	0.000	0.000
100.0	-1.127	-1.280	-1.170	-0.622	-1.170	-1.280	-1.127
102.0	-1.335	-1.513	-1.398	-0.823	-1.398	-1.513	-1.335
104.0	-1.563	-1.770	-1.650	-1.043	-1.650	-1.770	-1.563
106.0	-1.814	-2.055	-1.928	-1.285	-1.928	-2.055	-1.814
108.0	-2.090	-2.369	-2.236	-1.551	-2.236	-2.369	-2.090
110.0	-2.393	-2.715	-2.573	-1.843	-2.573	-2.715	-2.393
112.0	-2.727	-3.095	-2.946	-2.165	-2.946	-3.095	-2.727
114.0	-3.095	-3.514	-3.355	-2.519	-3.355	-3.514	-3.095
116.0	-3.500	-3.974	-3.805	-2.909	-3.805	-3.974	-3.500
118.0	-3.945	-4.478	-4.298	-3.339	-4.298	-4.478	-3.945
120.0	-4.436	-5.032	-4.840	-3.813	-4.840	-5.032	-4.436
	0.000	0.000	0.000	0.000	0.000	0.000	0.000
120.0	-4.436	-4.142	-4.503	-6.361	-4.503	-4.142	-4.436
121.8	-4.877	-4.641	-4.991	-6.787	-4.991	-4.641	-4.877
123.6	-5.279	-5.097	-5.437	-7.174	-5.437	-5.097	-5.279
125.4	-5.644	-5.511	-5.842	-7.525	-5.842	-5.511	-5.644
127.2	-5.974	-5.887	-6.210	-7.844	-6.210	-5.887	-5.974

130.8	-6.538	-6.530	-6.838	-8.386	-6.838	-6.530	-6.538
132.6	-6.782	-6.807	-7.109	-8.621	-7.109	-6.807	-6.782
134.4	-6.997	-7.051	-7.348	-8.829	-7.348	-7.051	-6.997
136.2	-7.189	-7.268	-7.560	-9.014	-7.560	-7.268	-7.189
138.0	-7.357	-7.457	-7.746	-9.177	-7.746	-7.457	-7.357
	0.000	0.000	0.000	0.000	0.000	0.000	0.000
138.0	-7.357	-7.461	-7.749	-9.175	-7.749	-7.461	-7.357
139.8	-7.503	-7.626	-7.910	-9.316	-7.910	-7.626	-7.503
141.6	-7.631	-7.771	-8.052	-9.439	-8.052	-7.771	-7.631
143.4	-7.735	-7.890	-8.168	-9.540	-8.168	-7.890	-7.735
145.2	-7.828	-7.995	-8.271	-9.629	-8.271	-7.995	-7.828
147.0	-7.898	-8.075	-8.349	-9.696	-8.349	-8.075	-7.898
148.8	-7.950	-8.134	-8.407	-9.747	-8.407	-8.134	-7.950
150.6	-7.985	-8.174	-8.446	-9.780	-8.446	-8.174	-7.985
152.4	-8.003	-8.194	-8.465	-9.797	-8.465	-8.194	-8.003
154.2	-8.003	-8.194	-8.465	-9.797	-8.465	-8.194	-8.003
156.0	-7.985	-8.174	-8.446	-9.780	-8.446	-8.174	-7.985
	0.000	0.000	0.000	0.000	0.000	0.000	0.000
156.0	-7.985	-8.173	-8.445	-9.781	-8.445	-8.173	-7.985
157.8	-7.956	-8.141	-8.413	-9.752	-8.413	-8.141	-7.956
159.6	-7.904	-8.082	-8.356	-9.702	-8.356	-8.082	-7.904
161.4	-7.840	-8.009	-8.285	-9.640	-8.285	-8.009	-7.840
163.2	-7.753	-7.910	-8.188	-9.556	-8.188	-7.910	-7.753
165.0	-7.654	-7.797	-8.078	-9.461	-8.078	-7.797	-7.654
166.8	-7.532	-7.658	-7.942	-9.344	-7.942	-7.658	-7.532
168.6	-7.387	-7.493	-7.780	-9.204	-7.780	-7.493	-7.387
170.4	-7.224	-7.308	-7.599	-9.047	-7.599	-7.308	-7.224
172.2	-7.038	-7.097	-7.393	-8.868	-7.393	-7.097	-7.038
174.0	-6.823	-6.854	-7.155	-8.660	-7.155	-6.854	-6.823
	0.000	0.000	0.000	0.000	0.000	0.000	0.000
174.0	-6.823	-6.849	-7.150	-8.662	-7.150	-6.849	-6.823
175.8	-6.590	-6.587	-6.894	-8.437	-6.894	-6.587	-6.590
177.6	-6.323	-6.285	-6.598	-8.179	-6.598	-6.285	-6.323
179.4	-6.032	-5.955	-6.276	-7.899	-6.276	-5.955	-6.032
181.2	-5.709	-5.587	-5.916	-7.588	-5.916	-5.587	-5.709
183.0	-5.351	-5.179	-5.517	-7.243	-5.517	-5.179	-5.351
184.8	-4.957	-4.730	-5.078	-6.864	-5.078	-4.730	-4.957
186.6	-4.523	-4.237	-4.596	-6.446	-4.596	-4.237	-4.523
188.4	-4.047	-3.696	-4.066	-5.987	-4.066	-3.696	-4.047
190.2	-3.524	-3.103	-3.487	-5.483	-3.487	-3.103	-3.524
192.0	-2.952	-2.457	-2.854	-4.931	-2.854	-2.457	-2.952
	0.000	0.000	0.000	0.000	0.000	0.000	0.000
192.0	-2.952	-3.723	-3.476	-2.096	-3.476	-3.723	-2.952
194.1	-2.287	-2.973	-2.741	-1.453	-2.741	-2.973	-2.287

196.2	-1.687	-2.292	-2.075	-0.874	-2.075	-2.292	-1.687
198.3	-1.143	-1.675	-1.471	-0.349	-1.471	-1.675	-1.143
200.4	-0.651	-1.115	-0.924	0.124	-0.924	-1.115	-0.651
202.5	-0.207	-0.609	-0.429	0.551	-0.429	-0.609	-0.207
204.6	0.195	-0.151	0.019	0.938	0.019	-0.151	0.195
206.7	0.559	0.263	0.424	1.288	0.424	0.263	0.559
208.8	0.888	0.636	0.789	1.605	0.789	0.636	0.888
210.9	1.186	0.972	1.118	1.893	1.118	0.972	1.186
213.0	1.454	1.273	1.413	2.153	1.413	1.273	1.454
	0.000	0.000	0.000	0.000	0.000	0.000	0.000
213.0	1.454	1.282	1.420	2.150	1.420	1.282	1.454
215.1	1.698	1.557	1.689	2.385	1.689	1.557	1.698
217.2	1.917	1.806	1.933	2.597	1.933	1.806	1.917
219.3	2.116	2.031	2.153	2.789	2.153	2.031	2.116
221.4	2.296	2.236	2.353	2.961	2.353	2.236	2.296
223.5	2.458	2.421	2.534	3.118	2.534	2.421	2.458
225.6	2.605	2.588	2.698	3.260	2.698	2.588	2.605
227.7	2.738	2.739	2.846	3.387	2.846	2.739	2.738
229.8	2.858	2.876	2.979	3.503	2.979	2.876	2.858
231.9	2.967	2.998	3.099	3.608	3.099	2.998	2.967
234.0	3.064	3.108	3.206	3.703	3.206	3.108	3.064
	0.000	0.000	0.000	0.000	0.000	0.000	0.000
234.0	3.064	3.111	3.209	3.701	3.209	3.111	3.064
236.1	3.153	3.211	3.307	3.787	3.307	3.211	3.153
238.2	3.233	3.302	3.396	3.864	3.396	3.302	3.233
240.3	3.306	3.384	3.476	3.934	3.476	3.384	3.306
242.4	3.371	3.458	3.549	3.997	3.549	3.458	3.371
244.5	3.429	3.525	3.614	4.053	3.614	3.525	3.429
246.6	3.482	3.585	3.673	4.104	3.673	3.585	3.482
248.7	3.530	3.640	3.726	4.150	3.726	3.640	3.530
250.8	3.573	3.688	3.774	4.192	3.774	3.688	3.573
252.9	3.612	3.732	3.817	4.229	3.817	3.732	3.612
255.0	3.646	3.771	3.855	4.262	3.855	3.771	3.646
	0.000	0.000	0.000	0.000	0.000	0.000	0.000
255.0	3.646	3.772	3.856	4.262	3.856	3.772	3.646
257.1	3.678	3.807	3.890	4.292	3.890	3.807	3.678
259.2	3.705	3.839	3.921	4.319	3.921	3.839	3.705
261.3	3.730	3.867	3.949	4.343	3.949	3.867	3.730
263.4	3.753	3.892	3.973	4.365	3.973	3.892	3.753
265.5	3.772	3.914	3.995	4.383	3.995	3.914	3.772
267.6	3.789	3.934	4.014	4.400	4.014	3.934	3.789
269.7	3.804	3.951	4.031	4.414	4.031	3.951	3.804
271.8	3.817	3.966	4.045	4.427	4.045	3.966	3.817
273.9	3.829	3.979	4.058	4.438	4.058	3.979	3.829

276.0	3.838	3.989	4.068	4.447	4.068	3.989	3.838
	0.000	0.000	0.000	0.000	0.000	0.000	0.000
276.0	3.838	3.990	4.069	4.447	4.069	3.990	3.838
278.1	3.846	3.998	4.077	4.454	4.077	3.998	3.846
280.2	3.852	4.005	4.084	4.460	4.084	4.005	3.852
282.3	3.857	4.011	4.089	4.465	4.089	4.011	3.857
284.4	3.859	4.014	4.092	4.468	4.092	4.014	3.859
286.5	3.861	4.016	4.094	4.469	4.094	4.016	3.861
288.6	3.862	4.017	4.095	4.470	4.095	4.017	3.862
290.7	3.861	4.015	4.094	4.469	4.094	4.015	3.861
292.8	3.858	4.013	4.091	4.466	4.091	4.013	3.858
294.9	3.854	4.008	4.087	4.462	4.087	4.008	3.854
297.0	3.849	4.002	4.081	4.457	4.081	4.002	3.849
	0.000	0.000	0.000	0.000	0.000	0.000	0.000
297.0	3.849	4.002	4.081	4.458	4.081	4.002	3.849
299.1	3.842	3.994	4.073	4.451	4.073	3.994	3.842
301.2	3.833	3.984	4.063	4.442	4.063	3.984	3.833
303.3	3.823	3.973	4.052	4.432	4.052	3.973	3.823
305.4	3.811	3.959	4.038	4.420	4.038	3.959	3.811
307.5	3.797	3.943	4.023	4.407	4.023	3.943	3.797
309.6	3.780	3.924	4.005	4.391	4.005	3.924	3.780
311.7	3.762	3.904	3.984	4.374	3.984	3.904	3.762
313.8	3.742	3.880	3.961	4.354	3.961	3.880	3.742
315.9	3.718	3.853	3.935	4.331	3.935	3.853	3.718
318.0	3.692	3.823	3.906	4.306	3.906	3.823	3.692
	0.000	0.000	0.000	0.000	0.000	0.000	0.000
318.0	3.692	3.822	3.905	4.306	3.905	3.822	3.692
320.1	3.662	3.789	3.873	4.277	3.873	3.789	3.662
322.2	3.629	3.752	3.837	4.246	3.837	3.752	3.629
324.3	3.593	3.711	3.796	4.211	3.796	3.711	3.593
326.4	3.552	3.665	3.751	4.171	3.751	3.665	3.552
328.5	3.507	3.613	3.700	4.128	3.700	3.613	3.507
330.6	3.456	3.555	3.644	4.079	3.644	3.555	3.456
332.7	3.400	3.492	3.582	4.025	3.582	3.492	3.400
334.8	3.338	3.421	3.513	3.965	3.513	3.421	3.338
336.9	3.270	3.344	3.437	3.899	3.437	3.344	3.270
339.0	3.193	3.258	3.353	3.826	3.353	3.258	3.193
	0.000	0.000	0.000	0.000	0.000	0.000	0.000
339.0	3.193	3.255	3.350	3.827	3.350	3.255	3.193
341.1	3.109	3.160	3.258	3.745	3.258	3.160	3.109
343.2	3.016	3.055	3.155	3.655	3.155	3.055	3.016
345.3	2.913	2.938	3.040	3.556	3.040	2.938	2.913
347.4	2.799	2.808	2.913	3.446	2.913	2.808	2.799
349.5	2.672	2.664	2.772	3.324	2.772	2.664	2.672

351.6	2.533	2.505	2.617	3.190	2.617	2.505	2.533
353.7	2.378	2.329	2.444	3.040	2.444	2.329	2.378
355.8	2.207	2.135	2.254	2.876	2.254	2.135	2.207
357.9	2.017	1.920	2.045	2.693	2.045	1.920	2.017
360.0	1.808	1.684	1.813	2.491	1.813	1.684	1.808
	0.000	0.000	0.000	0.000	0.000	0.000	0.000
360.0	1.808	2.028	1.940	1.484	1.940	2.028	1.808
362.0	1.609	1.803	1.719	1.291	1.719	1.803	1.609
364.0	1.427	1.597	1.518	1.115	1.518	1.597	1.427
366.0	1.262	1.409	1.334	0.956	1.334	1.409	1.262
368.0	1.112	1.239	1.168	0.812	1.168	1.239	1.112
370.0	0.976	1.084	1.016	0.681	1.016	1.084	0.976
372.0	0.852	0.943	0.878	0.562	0.878	0.943	0.852
374.0	0.739	0.814	0.753	0.454	0.753	0.814	0.739
376.0	0.637	0.698	0.639	0.355	0.639	0.698	0.637
378.0	0.544	0.594	0.537	0.265	0.537	0.594	0.544
380.0	0.460	0.499	0.444	0.183	0.444	0.499	0.460
	0.000	0.000	0.000	0.000	0.000	0.000	0.000
380.0	0.460	0.496	0.442	0.184	0.442	0.496	0.460
382.0	0.383	0.410	0.357	0.110	0.357	0.410	0.383
384.0	0.313	0.330	0.280	0.043	0.280	0.330	0.313
386.0	0.250	0.258	0.209	-0.018	0.209	0.258	0.250
388.0	0.192	0.193	0.145	-0.073	0.145	0.193	0.192
390.0	0.140	0.133	0.087	-0.124	0.087	0.133	0.140
392.0	0.092	0.079	0.034	-0.170	0.034	0.079	0.092
394.0	0.049	0.030	-0.014	-0.211	-0.014	0.030	0.049
396.0	0.010	-0.014	-0.058	-0.249	-0.058	-0.014	0.010
398.0	-0.026	-0.055	-0.097	-0.283	-0.097	-0.055	-0.026
400.0	-0.058	-0.091	-0.133	-0.315	-0.133	-0.091	-0.058
	0.000	0.000	0.000	0.000	0.000	0.000	0.000
400.0	-0.058	-0.092	-0.134	-0.314	-0.134	-0.092	-0.058
402.0	-0.088	-0.125	-0.166	-0.343	-0.166	-0.125	-0.088
404.0	-0.114	-0.156	-0.196	-0.369	-0.196	-0.156	-0.114
406.0	-0.139	-0.183	-0.223	-0.392	-0.223	-0.183	-0.139
408.0	-0.161	-0.209	-0.248	-0.414	-0.248	-0.209	-0.161
410.0	-0.181	-0.231	-0.270	-0.433	-0.270	-0.231	-0.181
412.0	-0.199	-0.252	-0.290	-0.450	-0.290	-0.252	-0.199
414.0	-0.216	-0.271	-0.309	-0.466	-0.309	-0.271	-0.216
416.0	-0.231	-0.288	-0.325	-0.481	-0.325	-0.288	-0.231
418.0	-0.244	-0.304	-0.341	-0.494	-0.341	-0.304	-0.244
420.0	-0.257	-0.318	-0.354	-0.506	-0.354	-0.318	-0.257
	0.000	0.000	0.000	0.000	0.000	0.000	0.000
420.0	-0.257	-0.318	-0.355	-0.506	-0.355	-0.318	-0.257
422.0	-0268	-0 331	-0.367	-0.517	-0.367	-0331	-0.268

424.0	-0.278	-0.342	-0.378	-0.527	-0.378	-0.342	-0.278
426.0	-0.288	-0.353	-0.389	-0.536	-0.389	-0.353	-0.288
428.0	-0.296	-0.362	-0.398	-0.544	-0.398	-0.362	-0.296
430.0	-0.304	-0.371	-0.407	-0.551	-0.407	-0.371	-0.304
432.0	-0.311	-0.379	-0.414	-0.558	-0.414	-0.379	-0.311
434.0	-0.317	-0.386	-0.421	-0.564	-0.421	-0.386	-0.317
436.0	-0.323	-0.393	-0.428	-0.569	-0.428	-0.393	-0.323
438.0	-0.328	-0.399	-0.433	-0.574	-0.433	-0.399	-0.328
440.0	-0.333	-0.404	-0.439	-0.579	-0.439	-0.404	-0.333
	0.000	0.000	0.000	0.000	0.000	0.000	0.000
440.0	-0.333	-0.404	-0.439	-0.579	-0.439	-0.404	-0.333
442.0	-0.337	-0.409	-0.443	-0.583	-0.443	-0.409	-0.337
444.0	-0.341	-0.413	-0.448	-0.587	-0.448	-0.413	-0.341
446.0	-0.344	-0.417	-0.451	-0.590	-0.451	-0.417	-0.344
448.0	-0.347	-0.421	-0.455	-0.593	-0.455	-0.421	-0.347
450.0	-0.350	-0.424	-0.458	-0.596	-0.458	-0.424	-0.350
452.0	-0.353	-0.427	-0.461	-0.598	-0.461	-0.427	-0.353
454.0	-0.355	-0.429	-0.463	-0.600	-0.463	-0.429	-0.355
456.0	-0.357	-0.432	-0.466	-0.602	-0.466	-0.432	-0.357
458.0	-0.359	-0.434	-0.468	-0.604	-0.468	-0.434	-0.359
460.0	-0.360	-0.435	-0.469	-0.606	-0.469	-0.435	-0.360
	0.000	0.000	0.000	0.000	0.000	0.000	0.000
460.0	-0.360	-0.435	-0.469	-0.606	-0.469	-0.435	-0.360
462.0	-0.362	-0.437	-0.471	-0.607	-0.471	-0.437	-0.362
464.0	-0.363	-0.438	-0.472	-0.608	-0.472	-0.438	-0.363
466.0	-0.364	-0.440	-0.474	-0.609	-0.474	-0.440	-0.364
468.0	-0.365	-0.441	-0.475	-0.610	-0.475	-0.441	-0.365
470.0	-0.366	-0.441	-0.475	-0.611	-0.475	-0.441	-0.366
472.0	-0.366	-0.442	-0.476	-0.611	-0.476	-0.442	-0.366
474.0	-0.367	-0.443	-0.477	-0.612	-0.477	-0.443	-0.367
476.0	-0.367	-0.443	-0.477	-0.612	-0.477	-0.443	-0.367
478.0	-0.367	-0.443	-0.477	-0.612	-0.477	-0.443	-0.367
480.0	-0.367	-0.443	-0.477	-0.612	-0.477	-0.443	-0.367

APPENDIX H

MEDWADOWSKI'S TORSION PROBLEM

In the EBC of case study four, this material corresponds to the input model, input data, input forms, figures of output data with checks in notepad version, and excel processed output data and charts.

Charts are presented containing both partial and combined tresses along interest points of the beam and cross section profile. Again, the asymptotic behavior of the thinwalled beam elastic line is successfully shown in the charts, which evidences the efficiency of the high order finite element used by BMTORSWP.

Positive shear and axial stresses are assumed similar to those occurring at the cross section flanges and web when the beam undergoes bending as shown below.

There is a match between the silhouette of BMTORSWP and Medwadowski charts. Nevertheless, Medwadowski committed a huge error in the scale of torques. He found torques 100 times larger than expected, which in terms of stresses is not acceptable at all. The reasoning to support this statement is as follows:

Given the hyperbolic nature of the functions involve in the angle of twist $\theta(z)$, each of its derivatives decreases an order of magnitude equal to the characteristic length "a". On the other hand, the ratio between bimoment B (= – ECw θ ", ksi-in^2) and warping moment Tw (= – ECw θ ", ksi-in) should be in the range of "a" ($\sqrt{ECw}/$ GJ =138.5 in).

Therefore, using Medwadowski own bimoment data, the warping moment Tw is expected to be around (4000+3000)ks-in²/138.50in ~ 50 k-in; as shown in the BMTORSWP chart.

280

Section Properties and Profile Interest Points "s"

	Mdw	
ASCE-JSD, V.111, N.2, Fel	b-85,p.453, Warp. M. Dist	ribution, Medwadowski
13 27 5 0 9 0 2	0 29000	
1 1 2 3 81999.1	. 76.50 E,KSI	-123921.
2 3 4 5 81999.1	. 76.50	-123921.
3 5 6 7 81999.1	. 126.0	-123921.
4 7 8 9 81999.1	. 81.00	G. kin-in^2 -123921.
5 9 10 11 81999. 1	. 120.0	-123921.
6 11 12 13 81999. 1	. 120.0 CW, Invo	-123921.
7 13 14 15 <u>81999.</u> <u>1</u>	. 120.0	tensile load -123921.
8 15 16 17 81999. 1	. 120.0	-123921.
9 17 18 19 81999. <mark>1</mark>	. 120.0 An area value t	-123921.
10 19 20 21 81999. 1	. 120.0 avoid singularit	-123921.
11 21 22 23 81999. 1	. 120.0	-123921.
12 23 24 25 81999. 1	. 120.0	-123921.
13 25 26 27 81999. 1	. 120.0	-123921.
5 1 1 1 0 9 0 1 0 1 5 (0 1 021 0 1 027 0 1 0	
2 5 56. 7 56.		
	applied loads, kip	

Input Notepad for Medwadowski Problem

Input Form Left Side for Medwadowski Problem

المتسارات

	AUTHOR: B. DESCHAPELLES																																							
39	40	41	42	43	44	45 46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	8/	79	80
NA	M	E:																																						
a	rj	pi	in	g	N	10) 1	n	e	n	[]	D	1	st	ri	b	u	ti	C	n	1	b	y	S	5.]	M	e	d	W	ve	lC	lc	v	VS	sk	i			
		(GE	NE	RA	L	IN	FO	RN	٨N	π	NC													F	PA AT	R	n/ N	AL D	R ?	ES	бТІ 1	RA FC	NN DR	T M	ES	; —		Т	٦
	_				_					_				_				_	_								_				(C	FC	R	Ν	0		_	1	1
I	3	SO	L	N۷	<u>ر</u>	SC)IL	T	I	\$	50	IL	T	J	A	NO N	GL	E	L	1	- (G'	*J		1		Ľ	Wr	1	0	N	I	L	Wn		9	NJ	4	1	2
-	┡				4														-	1	2	3	59	2			┞						┝					4	_	_
-		-			+	_		_	-						_						_						╞						┝					┦	_	_
-	┡	-	-		┦	_	-	-	-	┝									H		_		11				┞			-			┝					┦	_	-
\vdash	┡	-			╉		+	-	-	┡	-			\square	-				Η		-	-	1				┢	-		+			┡					┦	+	_
\vdash	┡	-	-		╉		+	-	\vdash	┡	-				-				\mid		-		11	-			┢				-		┞	-				╉	+	_
\vdash	┡	-			╉		+	-	-	┝					\vdash				Н		-		11	-			┢			-	-		┝					╉	+	_
-	┡	\vdash	$\left \right $		╉		+	+	\vdash	┢	-				\vdash				Н		-	\vdash	11	\vdash			┢			+	+		┢	-				╉	+	-
\vdash	┡	$\left \right $			╉		+	-	\vdash	┢	-				-				Н		-	-	11	-			┢			-	-		┢					╉	+	-
-	┠	\vdash	\vdash		╉	-	+	+	+	┢	-			\square	\vdash				Н		-	\vdash	11	\vdash			┢			+	+		┢	+				╉	+	┥
\vdash	┢	$\left \right $	-		╉		+	-	\vdash	┢									Н		-	\vdash	11				┢						┢					╉	+	┥
+	┢	$\left \right $			╉				+	┢									H	1	5	2	0	2	1		┢						┢					┨	+	┥
\vdash	┢	\square			┫	+			\vdash	┢										1	5	3	9	ħ	1	•	┢						┢					╉	+	
к	Y	к	ζZ	Ν	I	кx	k	Y	к	Z	١	۷	к	Х	к	Y	к	Z	1	<mark>۱</mark>	ĸ	X	К	(Y	k	٢Z	T	- -				ידכ								
	1		0				L																					5		'		<u> </u>	5							
				SF	PR	NG	;				١	۷	ĸ	D					S	PF	RIN	IG																		
																												S	PF	SIV	IG:	S	A	T S	SU	PF	POF	SL:	S	
╟		•											Ļ		Ļ		-		¢			-																		
	1	Ľ	.OA		V		JE	Ľ	N	Ľ	0A	D	V		_U	E	1	1			٩D	\ 	VA	LU	E															
╟		┡						┞		┡																					_		~~		_					
╟		┡					_	┞		┡																	A	٩P	PL	JE	D	N	ŰÜ	A	- F	-0	RC	ES	Ś	
╟		┡			_	-	+	┞	-	┡	-						L		Ц				-	-																
							<u> </u>	┝	-	┝																							г							_
NG	M	10	NA DU	L LU	s	\$¥	h	Ŕ	Ş	S	R PR	RO IN	TA G	M	0		L L	IS	Ý	Ş	h	ų	ž	SI	F PR	KO SIN	IG	M	0	NA DU	L L	JS		SP	R	N	GS	A	Т	
					1			t		ſ												ſ		ſ									1	El	<u>.</u> ЕІ 1	M. Of	A د ج	ND	,	
					1			T		Γ												ſ		Γ									1		İF	A	N	,		
39	40	41	42	43	44	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	20	71	72	73	74	75	76	77	8	79	80
Ц.	1	1	1				1	1	1	1	1				1	1	1				1	1	1	1	1	1	1	1	1	-	1		1	1	1				1	

Input Form Right Side for Medwadowski Problem

be around $(4000+3000)/138.50 \sim 50$; that is, a two-figure-number as shown below

Pure Torsion Shear Stress Beam and Profile

Twist Angle 1st. Derivative from BMTORSW

Warping Shear Stress along the Beam and Profile

Twist Angle 3rd. Derivative from BMTORSW

Warping Normal Stresses along the Beam and Profile

Twist Angle 2nd. Derivative from BMTORSW

Mdwout YOU ARE USING COMPUTER PROGRAM BMTORSW, DEVELOPED BY DR. BERNARDO DESCHAPELLES 0 INPUT DATA FILE NAME IS = Mdw.txt 0 OUTPUT FILE NAME IS = Mdwout.txt 0 STORAGE FILE FOR POST-PROCESSING WITH EXCEL = Mdwgr.grf 0-----_____ ASCE-JSD,V.111,N.2,Feb-85,p.453, Warp. M. Distribution, Medwadowski Omodulus of elasticity of the material = 29000. k/ft2 OELEM nodes inertia length distrib. load AXIAL SOIL NORMAL MODULUS,Ksf angle ft.4 1st END 2nd END ft at i at j LOAD rad 3******* 76.50 0.000******* 0.000 0.0 0.0 0.000 00 5****** 76.50 0.000****** 2 3 0.000 0.0 0.0 0.000 00 7******126.00 0.000******* 3 0.000 0.0 0.0 0.000 00 0.000******* 9****** 81.00 0.000 0.0 0.0 0.000 00 0.000******* 11******120.00 0.000 9 0.0 0.000 00 5 0.0 13******120.00 0.000******* 0.000 0.0 0.000 00 6 11 0.0 0.000******* 13 15******120.00 0.000 0.0 0.0 0.000 00 0.000******* 17******120.00 0.000 0.000 00 8 0.0 0.0 15 19******120.00 0.000****** 0.000 0.0 0.0 0.000 00 g 17 0.000******* 21******120.00 0.000 10 19 0.0 0.0 0.000 00 0.000******* 23*****120.00 0.000 0.000 00 11 0.0 21 0.0 0.000****** 25******120.00 0.000 0.0 0.0 0.000 00 12 23 0.000 0.000******* 27*******120.00 13 25 0.0 0.0 0.000 00 0 INPUT DATA RELATED TO THE 5 SUPPORTS 1 1 1 0 9 0 1 015 0 1 021 0 1 027 0 1 0 5 INPUT OF NODAL FORCES RELATED TO GLOBAL AXIS 2 0 2 5 56.00 7 56.00 AL SOLUTION FOUND ITERATIONS 0 FINAL SOLUTION AFTER 1 Output of nodal displacements in reference to global axes 0 Onode displ. displ. node displ. displ. displ. displ. along y or nonn2 along y or nonn2 along x around z along x around z or nonn 3 or nonn1 or nonn 3 or nonn1 1 0.0000E+00 0.0000E+00 0.1372E-03 2 0.0000E+00 0.5090E-02 0.8274E-03 3 0.0000E+00 0.9864E-02 0.1122E-03 4 0.0000E+00 0.1331E-01 0.4942E-03 + 5 0.0000E+00 0.1571E-01 0.2947E-04 6 0.0000E+00 0.1412E-01 -0.5240E-03 7 0.0000E+00 0.9604E-02 -0.1119E-03 8 0.0000E+00 0.4705E-02 -0.8189E-03 9 0.0000E+00 0.0000E+00 -0.9755E-04 10 0.0000E+00 -0.3503E-02 -0.4132E-03 + 11 0.0000E+00 -0.5136E-02 -0.2877E-05 12 0.0000E+00 -0.4465E-02 0.1699E-03 + 13 0.0000E+00 -0.3187E-02 0.2782E-04 14 0.0000E+00 -0.1507E-02 0.2718E-03 + 15 0.0000E+00 0.0000E+00 0.1904E-04 16 0.0000E+00 0.6849E-03 0.8093E-04 + 17 0.0000E+00 0.1006E-02 0.5994E-06 18 0.0000E+00 0.8765E-03 -0.3288E-04 + 19 0.0000E+00 0.6284E-03 -0.5426E-05 20 0.0000E+00 0.2986E-03 -0.5356E-04 Page 1

Output Notepad, Page 1

Mdwout + 21 0.0000E+00 0.0000E+00 -0.3847E-05 22 0.0000E+00 -0.1442E-03 -0.1771E-04 + 23 0.0000E+00 -0.2187E-03 -0.3150E-06 24 0.0000E+00 -0.2027E-03 0.5198E-05 + 25 0.0000E+00 -0.1591E-03 0.1078E-05 26 0.0000E+00 -0.8316E-04 0.1338E-04 + 27 0.0000E+00 0.0000E+00 0.1445E-05 0---OUTPUT OF SOIL REACTIONS, STRESSES AND TRANSVERSE DISPLACEMENTS 0. 1 2 3 1 DISPLACEMENTS IN INCIDENCES ELEMENT 0 0.00000E+00 0.00000E+00 0.13718E-03 NODE 1 NODE 2 0.0000E+00 0.50904E-02 0.82741E-03 0.0000E+00 NODE 3 0.98641E-02 0.11221E-03 FORCES ACTING ALONG THE 9 DOF 0 0.00000E+00 -0.36788E+02 -0.25466E-10 NODE 1 2 NODE 0.00000E+00 -0.40927E-11 0.00000E+00 3 0.36788E+02 -0.15919E+04 NODE 0.00000E+00 OELEMENT 1, FROM NODE 1, TO NODE 3 - LENGTH = 76.50 ft 0 left half of span, at tenth points of length span span span span span span 0.2 0.3 0.4 0.5 0.0 0.1 soil,k/ft 0.000 0.000 0.000 0.000 0.000 0.000 shear,k -36.79 -36.79 -36.79 -36.79 -36.79 -36.79 bmom, kft 0.00 -151.45 -303.37 -456.21 -610.44 -766.53 0.00000 0.00105 0.00209 0.00313 0.00416 tdisp,ft 0.00517 axial,k 0.00 AT 1st END and 0.00 AT 2nd END Oright half of span, at tenth points of length span span span span span span 0.7 0.5 0.6 0.8 0.9 1.0 0.000 0.000 0.000 soil,k/ft 0.000 0.000 0.000 shear,k -36.79 -36.79 -36.79 -36.79 -36.79 -36.79 bmom, kft -1086.22 -1250.79 -766.53 -924.97 -1419.17-1591.88tdisp,ft 0.00517 0.00616 0.00713 0.00807 0.00899 0.00986 0.00 AT 1st END and 0.00 AT 2nd END axial.k 0-----_____ 2 DISPLACEMENTS IN INCIDENCES 3 4 5 0 ELEMENT 3 0.00000E+00 0.98641E-02 NODE 0.11221E-03 NODE 4 0.00000E+00 0.13312E-01 0.49424E-03 0.29475E-04 NODE 5 0.00000E+00 0.15710E-01 0 FORCES ACTING ALONG THE 9 DOF 0.00000E+00 NODE 3 -0.36788E+02 0.15919E+04 -0.10368E-09 4 -0.26148E-11 0.00000E+00 NODE 0.<u>36788F+0</u>2 5 0.00000E+00 NODE -0.36817E+04 OELEMENT 2, FROM NODE 3, TO NODE 5 - LENGTH = 76.50 ft 0 left half of span, at tenth points of length span span span span span span 0.1 0.2 0.3 0.4 0.5 0.0 0.000 soil,k/ft 0.000 0.000 0.000 0.000 0.000 shear,k -36.79 -36.79 -36.79 -36.79 -36.79 -36.79 bmom, kft -1952.42 -2141.34 -1591.88-1769.45 -2336.79 -2539.38 0.00986 tdisp,ft axial,k 0.01150 0.01070 0.01224 0.01294 0.01357 0.00 AT 1st END and 0.00 AT 2nd END Oright half of span, at tenth points of length span 0.7 span 0.8 span span span span 1.0 0.6 0.9 0.5 0.000 0.000 0.000 0.000 0.000 soil,k/ft 0.000 shear, k -36.79 -36.79 -36.79 -36.79 bmom, kft -2539.38 -2749.71 -2968.42 -3196.19 -3433.72-3681.71 $(-Di + Dj)^* GJ + Vj^*L = Mj-Mi$, where GJ=123921 Page 2 .01571*123921-36.79*(76.5+76.5)= 1956.713-5628.87= -3672.157 Mj-Mi = -3681.71 OK

Output Notepad, Page 2

Output Notepad, Page 3

(-Di + Dj)* GJ + Vj*L = Mj-Mi, where GJ=12392100514*123921-9.5	7*120=-636.954-1148.4
Mdwout=-1785.354 <ok> 10 0ELEMENT 5, FROM NODE 9, TO NODE 11 - LENGTH = 120.00 ft 0 left half of span, at tenth points of length span span span span span span + 0.0 0.1 0.2 0.3 0.4</ok>	099.39-2884.47= -1785.08 span
soil,k/ft 0.000 0.000 0.000 0.000 0.000 shear,k -9.57 -9.57 -9.57 -9.57 bmom,kft 2884.47 2635.05 2405.41 2193.84 1998.74 tdisp,ft 0.00000 -0.00109 -0.00201 -0.00279 -0.00344 axial,k 0.00 AT 1st END and 0.00 AT 2nd END Oright half of span,at tenth points of length	0.000 -9.57 1818.65 -0.00397
span span span span span span span + 0.5 0.6 0.7 0.8 0.9 soil,k/ft 0.000 0.000 0.000 0.000 shear,k -9.57 -9.57 -9.57 -9.57 bmom,kft 1818.65 1652.22 1498.19 1355.41 1222.81 tdisp,ft -0.00397 -0.00438 -0.00470 -0.00492 -0.00507 axial,k 0.00 AT 1st END and 0.00 AT 2nd END 0	span 1.0 0.000 -9.57 1099.39 0.00514
O ELEMENT 6 DISPLACEMENTS IN INCIDENCES 11 12 13 NODE 11 0.00000E+00 -0.51357E-02 NODE 12 0.00000E+00 -0.44646E-02 NODE 13 0.00000E+00 -0.31872E-02 O FORCES ACTING ALONG THE 9 DOE	-0.28765E-05 0.16988E-03 0.27817E-04
NODE 11 0.00000E+00 -0.95721E+01 NODE 12 0.00000E+00 -0.17053E-12 NODE 13 0.0000E+00 0.95721E+01 OELEMENT 6, FROM NODE 11, TO NODE 13 - LENGTH =120.00 ft 0 left half of span.at tenth points of length	-0.10994E+04 -0.15916E-10 0.19221E+03
span span span span span span span + 0.0 0.1 0.2 0.3 0.4 soil,k/ft 0.000 0.000 0.000 0.000 0.000 shear,k -9.57 -9.57 -9.57 -9.57 bmom,kft 1099.39 984.23 876.45 775.26 679.89 tdisp,ft -0.00514 -0.00508 -0.00497 -0.00481 axial,k 0.00 AT 1st END and 0.00 AT 2nd END Oright half of span, at tenth points of length span span span span span span	span 0.5 0.000 -9.57 589.62 -0.00461 span
+ 0.5 0.6 0.7 0.8 0.9 soil,k/ft 0.000 0.000 0.000 0.000 shear,k -9.57 -9.57 -9.57 -9.57 bmom,kft 589.62 503.78 421.73 342.84 266.52 tdisp,ft -0.00461 -0.00438 -0.00412 -0.00383 -0.00351 axial,k 0.00 AT 1st END and 0.00 AT 2nd END	1.0 0.000 -9.57 192.21 -0.00319
O ELEMENT 7 DISPLACEMENTS IN INCIDENCES 13 14 15 NODE 13 0.00000E+00 -0.31872E-02 NODE 14 0.00000E+00 -0.15069E-02 NODE 15 0.00000E+00 0.00000E+00 O EORCES ACTING ALONG THE 9 DOE	0.27817E-04 0.27182E-03 0.19041E-04
NODE 13 0.00000E+00 -0.95721E+01 NODE 14 0.00000E+00 -0.28422E-13 NODE 15 0.00000E+00 0.95721E+01 OELEMENT 7, FROM NODE 13, TO NODE 15 - LENGTH =120.00 ft 0 left half of span at tenth points of length - <td>-0.19221E+03 0.50022E-11 -0.56149E+03</td>	-0.19221E+03 0.50022E-11 -0.56149E+03
span span span span span span span + 0.0 0.1 0.2 0.3 0.4 soil,k/ft 0.000 0.000 0.000 0.000 0.000 shear,k -9.57 -9.57 -9.57 -9.57 bmom,kft 192.21 119.34 47.36 -24.25 -96.05 tdisp,ft -0.00319 -0.00285 -0.00250 -0.00215 -0.00181 axial,k 0.00 AT 1st END and 0.00 AT 2nd END Oright half of span,at tenth points of length	span 0.5 0.000 -9.57 -168.58 -0.00146
Span Span Span Span Page 4	span

Output Notepad, Page 4

www.manaraa.com

+ 0.5 0.6 0. soil,k/ft 0.000 0.000 shear,k -9.57 -9.57 bmom,kft -168.58 -242.36 - tdisp,ft -0.00146 -0.00113 -0 axial,k 0.00 AT 1st END an 0	Mdwout 7 0.8 0.000 0.000 -9.57 -9.57 317.97 -395.97 .00082 -0.00052 d 0.00 AT 2nd	0.9 0.000 -9.57 -476.94 -0.00024 d END	1.0 0.000 -9.57 -561.49 0.00000
O ELEMENT 8 DISPLACEMENTS NODE 15 0.00000 NODE 16 0.00000 NODE 17 0.00000	IN INCIDENCES 15 E+00 0.000 E+00 0.68 E+00 0.100	16 17 000E+00 492E-03 055E-02	0.19041E-04 0.80928E-04 0.59935E-06
NODE 15 0.00000 NODE 16 0.00000 NODE 16 0.00000 NODE 17 0.00000 0ELEMENT 8, FROM NODE 15, TO NOD	E+00 0.18 E+00 0.37 E+00 -0.18 E 17 - LENGTH =120	526E+01 303E-13 526E+01 0.00 ft	0.56149E+03 0.17053E-11 -0.21457E+03
b) reft harr of span, at tert point span span soil, k/ft 0.000 0.000 shear, k 1.85 1.85 bmom, kft -561.49 -512.98 - tdisp, ft 0.00000 0.00021 0 axial, k 0.00 AT 1st END an 0right half of span, at tenth point span span span span + 0.5 0.6 0. soil, k/ft 0.000 0.000 shear, k 1.85 bmom, kft -354.27 -321.93 - tdisp, ft 0.00078 0.00086 0 axial, k 0.00 AT 1st END an 0	span span 2 0.3 0.000 0.000 1.85 1.85 468.33 -427.20 .00039 0.00055 d 0.00 AT 2nd ts of length span span 7 0.8 0.000 0.000 1.85 1.85 292.01 -264.27 .00092 0.00096 d 0.00 AT 2nd	span 0.4 0.000 1.85 -389.28 0.00067 d END span 0.9 0.000 1.85 -238.53 0.00099 d END	span 0.5 0.000 1.85 -354.27 0.00078 span 1.0 0.000 1.85 -214.57 0.00101
0 ELEMENT 9 DISPLACEMENTS NODE 17 0.00000 NODE 18 0.00000 NODE 19 0.00000	IN INCIDENCES 17 E+00 0.100 E+00 0.870 E+00 0.622	18 19 055E-02 648E-03 840E-03	0.59935E-06 -0.32878E-04 -0.54263E-05
NODE 17 0.00000 NODE 18 0.00000 NODE 19 0.00000 0ELEMENT 9, FROM NODE 17, TO NOD	E+00 0.18 E+00 0.14 E+00 -0.18 E 19 - LENGTH =120	526E+01 211E-13 526E+01 0.00 ft	0.21457E+03 0.90949E-12 -0.38994E+02
+ 0.0 0.1 0.000 shear,k 1.85 1.85 bmom,kft -214.57 -192.22 - tdisp,ft 0.00101 0.00101 0 axial,k 0.00 AT 1st END an Oright half of span,at tenth poin	span span 2 0.3 0.000 0.000 1.85 1.85 171.32 -151.71 .00100 0.00097 d 0.00 AT 2nd ts of length	span 0.4 0.000 1.85 -133.23 0.00094 d END	span 0.5 0.000 1.85 -115.75 0.00091
+ 0.5 0.6 0. soil,k/ft 0.000 0.000 shear,k 1.85 1.85 bmom,kft -115.75 -99.15 tdisp,ft 0.00091 0.00086 0 axial,k 0.00 AT 1st END an	7 0.8 0.000 0.000 1.85 1.85 -83.28 -68.05 .00081 0.00075 d 0.00 AT 2nd	0.9 0.000 1.85 -53.32 0.00069 d END	1.0 0.000 1.85 -38.99 0.00063
O ELEMENT 10 DISPLACEMENTS NODE 19 0.00000 NODE 20 0.00000 NODE 21 0.00000	IN INCIDENCES 19 E+00 0.623 E+00 0.293 E+00 0.000 Page 5	20 21 840E-03 860E-03 000E+00	-0.54263E-05 -0.53560E-04 -0.38472E-05

Output Notepad, Page 5

Mdwout	
O FORCES ACTING ALONG THE 9 DOF NODE 19 0.00000E+00 0.18526E+01 NODE 20 0.00000E+00 0.35527E-13 NODE 21 0.00000E+00 -0.18526E+01 OELEMENT 10, FROM NODE 19, TO NODE 21 - LENGTH =120.00 ft 0 left half of span.at tenth points of length	0.38994E+02 -0.34106E-12 0.10544E+03
span span span span span span span + 0.0 0.1 0.2 0.3 0.4 soil,k/ft 0.000 0.000 0.000 0.000 0.000 shear,k 1.85 1.85 1.85 1.85 1.85 bmom,kft -38.99 -24.96 -11.12 2.65 16.43 tdisp,ft 0.00063 0.00056 0.00049 0.00043 0.00036 axial,k 0.00 AT 1st END and 0.00 AT 2nd END Oright half of span at tonth points of longth	span 0.5 0.000 1.85 30.33 0.00029
span	span 1.0 0.000 1.85 105.44 0.00000
O ELEMENT 11 DISPLACEMENTS IN INCIDENCES 21 22 23 NODE 21 0.00000E+00 0.00000E+00 0.00000E+00 NODE 0.00000E+00 -0.14424E-03 0.00000E+00 -0.21871E-03 0 FORCES ALONG THE 9 DOF 0 -0.21871E-03 0 <td< td=""><td>-0.38472E-05 -0.17711E-04 -0.31503E-06</td></td<>	-0.38472E-05 -0.17711E-04 -0.31503E-06
NODE 21 0.0000E+00 -0.29290E+00 NODE 22 0.00000E+00 0.22649E-13 NODE 23 0.00000E+00 0.29290E+00 0ELEMENT 11, FROM NODE 21, TO NODE 23 - LENGTH =120.00 ft	-0.10544E+03 0.26290E-12 0.43193E+02
o Tert nam of span, at terth points of rength span	span 0.5 0.000 -0.29 67.85 -0.00016
span span span span span span span + 0.5 0.6 0.7 0.8 0.9 soil,k/ft 0.000 0.000 0.000 0.000 shear,k -0.29 -0.29 -0.29 -0.29 -0.29 bmom,kft 67.85 62.07 56.74 51.85 47.34 tdisp,ft -0.00016 -0.00018 -0.00019 -0.00021 -0.00021 axial,k 0.00 AT 1st END and 0.00 AT 2nd END	span 1.0 0.000 -0.29 43.19 -0.00022
O ELEMENT 12 DISPLACEMENTS IN INCIDENCES 23 24 25 NODE 23 0.00000E+00 -0.21871E-03 0.00000E+00 -0.20265E-03 0.00000E+00 -0.15908E-03 0.00000E+00 -0.15908E-03 0.0000E+00 -0.15908E-03 0.0000E+00 -0.15908E-03 0.0000E+00 -0.15908E-03 0.000E 0.00E 0.	-0.31503E-06 0.51981E-05 0.10782E-05
NODE 23 0.00000E+00 -0.29290E+00 NODE 24 0.00000E+00 -0.21316E-13 NODE 25 0.00000E+00 0.29290E+00 0ELEMENT 12, FROM NODE 23, TO NODE 25 - LENGTH =120.00 ft	-0.43193E+02 0.51159E-12 0.15434E+02
span span span span span + 0.0 0.1 0.2 0.3 0.4 soil,k/ft 0.000 0.000 0.000 0.000 0.000 shear,k -0.29 -0.29 -0.29 -0.29 bmom,kft 43.19 39.37 35.84 32.58 29.56 Page 6	span 0.5 0.000 -0.29 26.76

Output Notepad, Page 6

www.manaraa.com

Mdwout tdisp,ft -0.00022 -0.00022 -0.00022 -0.00022 -0.00022 -0.00021 0.00 AT 1st END and axial,k 0.00 AT 2nd END Oright half of span, at tenth points of length span span span span span span 0.7 0.5 0.6 0.8 0.9 1.0 soil,k/ft 0.000 0.000 0.000 0.000 0.000 0.000 shear, k -0.29 -0.29 -0.29 -0.29 -0.29 -0.29 bmom, kft 26.76 24.17 21.76 19.51 17.41 15.43 tdisp,ft -0.00021 -0.00020 -0.00019 -0.00018 -0.00017 -0.00016 0.00 AT 1st END and 0.00 AT 2nd END axial,k 0 -ELEMENT 13 DISPLACEMENTS IN INCIDENCES 25 26 27 0 25 0.0000E+00 -0.15908E-03 0.10782E-05 NODE 0.13384E-04 NODE 26 0.00000E+00 -0.83163E-04 NODE 27 0.00000E+00 0.00000E+00 0.14450E-05 FORCES ACTING ALONG THE 9 DOF 0 0.0000E+00 -0.29290E+00 -0.15434E+02 NODE 25 0.56843E-13 NODE 26 0.00000E+00 0.88818E-14 0.29290E+00 NODE 27 0.0000E+00 0.17053E-12 OELEMENT 13, FROM NODE 25, TO NODE 27 - LENGTH =120.00 ft 0 left half of span, at tenth points of length span span span span span span 0.0 0.1 0.2 0.3 0.4 0.5 soil,k/ft 0 000 0.000 0.000 0.000 0.000 0.000 shear,k -0.29 -0.29 -0.29 -0.29 -0.29 -0.29 bmom, kft 15.43 13.58 11.82 10.16 8.57 7.05 tdisp,ft -0.00016 -0.00015 -0.00013 -0.00012 -0.00010 -0.00008 0.00 AT 2nd END axial,k 0.00 AT 1st END and Oright half of span, at tenth points of length span span span span span span 0.5 0.7 0.9 0.6 0.8 1.0 soil,k/ft 0.000 0.000 0.000 0.000 0.000 0.000 shear, k -0.29 -0.29 -0.29 -0.29 -0.29 -0.29 bmom, kft 7.05 5.57 4.14 2.75 1.37 0.00 -0.00003 -0.00007 -0.00005 -0.00002 0.00000 tdisp,ft -0.00008 axial,k 0.00 AT 1st END and 0.00 AT 2nd END 1 (-Di + Dj)* GJ + Vj*L = Mj-Mi, where GJ=123921 -(-0.00016)*123921 - 0.29* 120 = 19.827 - 3.48 = 16.347 bmom= 15.43 ~ 16.347 OK

Output Notepad, Page 7

	Z	θ	T(z)	B(z)	θ'	θ'''	
1							
	0	0.000E+00	-36.7876	0	1.372E-04	1.590E-11	-8.325E-09
	7.65	1.000E-03	-36.7876	-151.4528	1.369E-04	-6.369E-08	-8.335E-09
	15.3	2.100E-03	-36.7876	-303.3677	1.362E-04	-1.276E-07	-8.372E-09
	22.95	3.100E-03	-36.7876	-456.2081	1.350E-04	-1.919E-07	-8.435E-09
	30.6	4.200E-03	-36.7876	-610.4401	1.333E-04	-2.567E-07	-8.524E-09
	38.25	5.200E-03	-36.7876	-766.5342	1.311E-04	-3.223E-07	-8.640E-09
	45.9	6.200E-03	-36.7876	-924.9667	1.283E-04	-3.890E-07	-8.783E-09
	53.55	7.100E-03	-36.7876	-1086.221	1.251E-04	-4.568E-07	-8.952E-09
	61.2	8.100E-03	-36.7876	-1250.788	1.213E-04	-5.260E-07	-9.147E-09
	68.85	9.000E-03	-36.7876	-1419.171	1.171E-04	-5.968E-07	-9.369E-09
	76.5	9.900E-03	-36.7876	-1591.884	1.122E-04	-6.694E-07	-9.617E-09
2							
	76.5	9.900E-03	-36.7876	-1591.884	1.122E-04	-6.694E-07	-9.637E-09
	84.15	1.070E-02	-36.7876	-1769.452	1.068E-04	-7.441E-07	-9.909E-09
	91.8	1.150E-02	-36.7876	-1952.418	1.008E-04	-8.211E-07	-1.022E-08
	99.45	1.220E-02	-36.7876	-2141.34	9.424E-05	-9.005E-07	-1.056E-08
	107.1	1.290E-02	-36.7876	-2336.794	8.703E-05	-9.827E-07	-1.093E-08
	114.75	1.360E-02	-36.7876	-2539.377	7.919E-05	-1.068E-06	-1.134E-08
	122.4	1.410E-02	-36.7876	-2749.706	7.069E-05	-1.156E-06	-1.179E-08
	130.05	1.470E-02	-36.7876	-2968.422	6.149E-05	-1.248E-06	-1.227E-08
	137.7	1.510E-02	-36.7876	-3196.194	5.158E-05	-1.344E-06	-1.278E-08
	145.35	1.540E-02	-36.7876	-3433.716	4.092E-05	-1.444E-06	-1.333E-08
	153	1.570E-02	-36.7876	-3681.713	2.947E-05	-1.548E-06	-1.392E-08
3							
	153	1.570E-02	19.2124	-3681.713	2.947E-05	-1.548E-06	9.540E-09
	165.6	1.600E-02	19.2124	-3408.456	1.070E-05	-1.433E-06	8.616E-09
	178.2	1.600E-02	19.2124	-3163.419	-6.696E-06	-1.330E-06	7.736E-09
	190.8	1.580E-02	19.2124	-2944.575	-2.287E-05	-1.238E-06	6.901E-09
	203.4	1.540E-02	19.2124	-2750.11	-3.794E-05	-1.156E-06	6.111E-09
	216	1.480E-02	19.2124	-2578.411	-5.205E-05	-1.084E-06	5.366E-09
	228.6	1.410E-02	19.2124	-2428.056	-6.530E-05	-1.021E-06	4.666E-09
	241.2	1.320E-02	19.2124	-2297.802	-7.781E-05	-9.663E-07	4.011E-09
	253.8	1.210E-02	19.2124	-2186.571	-8.969E-05	-9.197E-07	3.401E-09
	266.4	1.090E-02	19.2124	-2093.447	-1.010E-04	-8.804E-07	2.836E-09
	279	9.600E-03	19.2124	-2017.656	-1.119E-04	-8.480E-07	2.315E-09
4		0.0007.05		001	1 1 1 0 - 0 -	0.40.55.0=	
	279	9.600E-03	75.2124	-2017.656	-1.119E-04	-8.485E-07	2.580E-08
	287.1	8.700E-03	75.2124	-1523.927	-1.179E-04	-6.409E-07	2.548E-08
	295.2	7.700E-03	75.2124	-1035.411	-1.223E-04	-4.354E-07	2.526E-08
	303.3	6.700E-03	75.2124	-550.4354	-1.250E-04	-2.315E-07	2.511E-08
	311.4	5.700E-03	75.2124	-67.3426	-1.260E-04	-2.832E-08	2.506E-08
	319.5	4.700E-03	75.2124	415.5199	-1.255E-04	1.747E-07	2.509E-08

Table of Twist angle and Derivatives

	327.6	3.600E-03	75.2124	899.8037	-1.232E-04	3.784E-07	2.521E-08
	Z	θ	T(z)	B(z)	θ'	θ"	θ'''
	335.7	2.700E-03	75.2124	1387.164	-1.193E-04	5.833E-07	2.541E-08
	343.8	1.700E-03	75.2124	1879.27	-1.138E-04	7.903E-07	2.570E-08
	351.9	8.000E-04	75.2124	2377.802	-1.065E-04	9.999E-07	2.608E-08
	360	0.000E+00	75.2124	2884.467	-9.755E-05	1.213E-06	2.654E-08
5							
	360	0.000E+00	-9.5721	2884.467	-9.755E-05	1.213E-06	-9.062E-09
	372	-1.100E-03	-9.5721	2635.046	-8.363E-05	1.108E-06	-8.370E-09
	384	-2.000E-03	-9.5721	2405.411	-7.092E-05	1.012E-06	-7.725E-09
	396	-2.800E-03	-9.5721	2193.841	-5.932E-05	9.226E-07	-7.125E-09
	408	-3.400E-03	-9.5721	1998.744	-4.875E-05	8.405E-07	-6.571E-09
	420	-4.000E-03	-9.5721	1818.654	-3.913E-05	7.647E-07	-6.064E-09
	432	-4.400E-03	-9.5721	1652.219	-3.037E-05	6.947E-07	-5.602E-09
	444	-4.700E-03	-9.5721	1498.189	-2.243E-05	6.301E-07	-5.186E-09
	456	-4.900E-03	-9.5721	1355.409	-1.523E-05	5.701E-07	-4.817E-09
	468	-5.100E-03	-9.5721	1222.808	-8.731E-06	5.143E-07	-4.493E-09
	480	-5.100E-03	-9.5721	1099.39	-2.877E-06	4.621E-07	-4.215E-09
6							
	480	-5.100E-03	-9.5721	1099.39	-2.877E-06	4.622E-07	-4.159E-09
	492	-5.100E-03	-9.5721	984.2255	2.377E-06	4.139E-07	-3.897E-09
	504	-5.100E-03	-9.5721	876.4516	7.069E-06	3.686E-07	-3.658E-09
	516	-5.000E-03	-9.5721	775.2594	1.123E-05	3.260E-07	-3.443E-09
	528	-4.800E-03	-9.5721	679.8887	1.490E-05	2.859E-07	-3.250E-09
	540	-4.600E-03	-9.5721	589.6228	1.810E-05	2.479E-07	-3.082E-09
	552	-4.400E-03	-9.5721	503.7838	2.086E-05	2.118E-07	-2.936E-09
	564	-4.100E-03	-9.5721	421.7273	2.320E-05	1.774E-07	-2.814E-09
	576	-3.800E-03	-9.5721	342.8376	2.512E-05	1.442E-07	-2.715E-09
	588	-3.500E-03	-9.5721	266.5228	2.666E-05	1.121E-07	-2.640E-09
	600	-3.200E-03	-9.5721	192.2095	2.782E-05	8.075E-08	-2.588E-09
7							
	600	-3.200E-03	-9.5721	192.2095	2.782E-05	8.085E-08	-2.578E-09
	612	-2.800E-03	-9.5721	119.3392	2.860E-05	5.018E-08	-2.536E-09
	624	-2.500E-03	-9.5721	47.365	2.902E-05	1.991E-08	-2.513E-09
	636	-2.200E-03	-9.5721	-24.2538	2.908E-05	-1.020E-08	-2.509E-09
	648	-1.800E-03	-9.5721	-96.0547	2.878E-05	-4.039E-08	-2.525E-09
	660	-1.500E-03	-9.5721	-168.5768	2.811E-05	-7.088E-08	-2.560E-09
	672	-1.100E-03	-9.5721	-242.3646	2.707E-05	-1.019E-07	-2.615E-09
	684	-8.000E-04	-9.5721	-317.9721	2.566E-05	-1.337E-07	-2.689E-09
	696	-5.000E-04	-9.5721	-395.9673	2.386E-05	-1.665E-07	-2.782E-09
	708	-2.000E-04	-9.5721	-476.9359	2.166E-05	-2.006E-07	-2.895E-09
	720	0.000E+00	-9.5721	-561.4858	1.904E-05	-2.361E-07	-3.028E-09
8							
	720	0.000E+00	1.8526	-561.4858	1.904E-05	-2.361E-07	1.762E-09
	732	2.000E-04	1.8526	-512.9839	1.633E-05	-2.157E-07	1.628E-09

	744	4 000E 04	1 0576	160 221	1 2065 05	1 0705 07	1 502E 00
	744	4.000E-04	1.8320	-408.334	1.380E-03	-1.9/0E-0/	1.302E-09
	/30	5.000E-04	1.8320 T()	-427.2012	1.160E-05	-1./9/E-0/	1.385E-09
	Z	θ	1(Z)	B(Z)	θ.	θ	θ
	768	7.000E-04	1.8526	-389.2762	9.540E-06	-1.637E-07	1.277E-09
	780	8.000E-04	1.8526	-354.274	7.666E-06	-1.490E-07	1.178E-09
	792	9.000E-04	1.8526	-321.9316	5.961E-06	-1.354E-07	1.088E-09
	804	9.000E-04	1.8526	-292.0065	4.413E-06	-1.228E-07	1.007E-09
	816	1.000E-03	1.8526	-264.274	3.010E-06	-1.112E-07	9.354E-10
	828	1.000E-03	1.8526	-238.5263	1.742E-06	-1.003E-07	8.723E-10
	840	1.000E-03	1.8526	-214.5698	5.994E-07	-9.018E-08	8.181E-10
9							
	840	1.000E-03	1.8526	-214.5698	5.994E-07	-9.021E-08	8.072E-10
	852	1.000E-03	1.8526	-192.2241	-4.264E-07	-8.084E-08	7.560E-10
	864	1.000E-03	1.8526	-171.3219	-1.343E-06	-7.205E-08	7.093E-10
	876	1.000E-03	1.8526	-151.7062	-2.158E-06	-6.380E-08	6.672E-10
	888	9.000E-04	1.8526	-133.2296	-2.876E-06	-5.602E-08	6.295E-10
	900	9.000E-04	1.8526	-115.7534	-3.504E-06	-4.867E-08	5.964E-10
	912	9.000E-04	1.8526	-99.1463	-4.046E-06	-4.169E-08	5.678E-10
	924	8.000E-04	1.8526	-83.2836	-4.506E-06	-3.503E-08	5.438E-10
	936	8.000E-04	1.8526	-68.0463	-4.887E-06	-2.862E-08	5.242E-10
	948	7.000E-04	1.8526	-53.32	-5.194E-06	-2.243E-08	5.092E-10
	960	6.000E-04	1.8526	-38.9942	-5.426E-06	-1.638E-08	4.987E-10
10							
	960	6.000E-04	1.8526	-38.9942	-5.426E-06	-1.640E-08	4.967E-10
	972	6.000E-04	1.8526	-24.9611	-5.588E-06	-1.050E-08	4.881E-10
	984	5.000E-04	1.8526	-11.1154	-5.679E-06	-4.673E-09	4.831E-10
	996	4.000E-04	1.8526	2.6469	-5.700E-06	1.114E-09	4.819E-10
	1008	4.000E-04	1.8526	16.429	-5.652E-06	6.908E-09	4.844E-10
	1020	3.000E-04	1.8526	30.3345	-5.534E-06	1.275E-08	4.906E-10
	1032	2.000E-04	1.8526	44.4677	-5.345E-06	1.870E-08	5.006E-10
	1044	2.000E-04	1.8526	58.9348	-5.085E-06	2.478E-08	5.143E-10
	1056	1.000E-04	1.8526	73.8445	-4.750E-06	3.106E-08	5.316E-10
	1068	0.000E+00	1.8526	89.3086	-4.338E-06	3.756E-08	5.527E-10
	1080	0.000E+00	1.8526	105.4434	-3.847E-06	4.434E-08	5.776E-10
11							
	1080	0.000E+00	-0.2929	105.4434	-3.847E-06	4.433E-08	-3.219E-10
H	1092	0.000E+00	-0.2929	96.5919	-3.338E-06	4.062E-08	-2.966E-10
	1104	-1.000E-04	-0.2929	88.4658	-2.871E-06	3.721E-08	-2.729E-10
	1116	-1.000E-04	-0.2929	81.0039	-2.444E-06	3.407E-08	-2.508E-10
	1128	-1.000E-04	-0.2929	74.1504	-2.053E-06	3.118E-08	-2.303E-10
	1140	-2.000E-04	-0.2929	67.8535	-1.694E-06	2.853E-08	-2.115E-10
	1152	-2.000E-04	-0.2929	62.0661	-1.367E-06	2.610E-08	-1.942E-10
	1164	-2.000E-04	-0.2929	56.7448	-1.067E-06	2.386E-08	-1.785E-10
	1176	-2.000E-04	-0.2929	51.8495	-7.935E-07	2.181E-08	-1.644E-10
	1188	-2.000E-04	-0.2929	47.3436	-5.433E-07	1.991E-08	-1.520E-10
L	- •						

	1200	-2.000E-04	-0.2929	43.1933	-3.150E-07	1.815E-08	-1.411E-10
12							
	1200	-2.000E-04	-0.2929	43.1933	-3.150E-07	1.816E-08	-1.389E-10
	Z	θ	T(z)	B(z)	θ'	θ"	θ'''
	1212	-2.000E-04	-0.2929	39.3672	-1.069E-07	1.656E-08	-1.285E-10
	1224	-2.000E-04	-0.2929	35.8367	8.279E-08	1.507E-08	-1.189E-10
	1236	-2.000E-04	-0.2929	32.5754	2.553E-07	1.370E-08	-1.100E-10
	1248	-2.000E-04	-0.2929	29.5586	4.120E-07	1.243E-08	-1.018E-10
	1260	-2.000E-04	-0.2929	26.7638	5.540E-07	1.125E-08	-9.430E-11
	1272	-2.000E-04	-0.2929	24.17	6.824E-07	1.016E-08	-8.752E-11
	1284	-2.000E-04	-0.2929	21.7576	7.982E-07	9.150E-09	-8.146E-11
	1296	-2.000E-04	-0.2929	19.5086	9.023E-07	8.205E-09	-7.611E-11
	1308	-2.000E-04	-0.2929	17.4061	9.954E-07	7.321E-09	-7.148E-11
	1320	-2.000E-04	-0.2929	15.4343	1.078E-06	6.487E-09	-6.757E-11
13							
	1320	-2.000E-04	-0.2929	15.4343	1.078E-06	6.489E-09	-6.679E-11
	1332	-1.000E-04	-0.2929	13.5784	1.151E-06	5.710E-09	-6.312E-11
	1344	-1.000E-04	-0.2929	11.8244	1.215E-06	4.973E-09	-5.985E-11
	1356	-1.000E-04	-0.2929	10.1592	1.271E-06	4.272E-09	-5.698E-11
	1368	-1.000E-04	-0.2929	8.5704	1.318E-06	3.604E-09	-5.451E-11
	1380	-1.000E-04	-0.2929	7.0458	1.357E-06	2.963E-09	-5.243E-11
	1392	-1.000E-04	-0.2929	5.5742	1.389E-06	2.344E-09	-5.075E-11
	1404	-1.000E-04	-0.2929	4.1444	1.414E-06	1.743E-09	-4.947E-11
	1416	0.000E+00	-0.2929	2.7458	1.431E-06	1.155E-09	-4.858E-11
	1428	0.000E+00	-0.2929	1.3678	1.442E-06	5.754E-10	-4.810E-11
	1440	0.000E+00	-0.2929	0	1.445E-06	-8.881E-13	-4.801E-11

Table of Pure Torsion Shear Stresses along "z" and "s"

	Pure Torsion Shear Stresses G*t*0'											
"'t'"=	0.625	0.625	1	0.625	0.625	0.5	1	1	1			
"s"=	1	2	3	4	5	6	7	8	9			
Z												
0	0.96	0.96	1.53	0.96	0.96	0.77	1.53	1.53	1.53			
7.65	0.95	0.95	1.53	0.95	0.95	0.76	1.53	1.53	1.53			
15.3	0.95	0.95	1.52	0.95	0.95	0.76	1.52	1.52	1.52			
22.95	0.94	0.94	1.51	0.94	0.94	0.75	1.51	1.51	1.51			
30.6	0.93	0.93	1.49	0.93	0.93	0.74	1.49	1.49	1.49			
38.25	0.91	0.91	1.46	0.91	0.91	0.73	1.46	1.46	1.46			
45.9	0.89	0.89	1.43	0.89	0.89	0.72	1.43	1.43	1.43			
53.55	0.87	0.87	1.40	0.87	0.87	0.70	1.40	1.40	1.40			
61.2	0.85	0.85	1.35	0.85	0.85	0.68	1.35	1.35	1.35			
68.85	0.82	0.82	1.31	0.82	0.82	0.65	1.31	1.31	1.31			
76.5	0.78	0.78	1.25	0.78	0.78	0.63	1.25	1.25	1.25			

76.5 0.78 0.78 0.78 0.63 1.25 1.25 1.25 84.15 0.74 0.74 0.74 0.74 0.60 1.19 1.19 1.19 91.8 0.70 0.70 1.12 0.70 0.76 0.56 1.12 1.12 1.12 99.45 0.66 0.66 1.05 0.66 0.66 0.53 1.05 1.05 "s" 1 2 3 4 5 6 7 8 9 z		1	1					1		
84.15 0.74 0.74 0.74 0.60 1.19 1.19 1.19 1.19 1.19 1.19 1.19 1.19 1.19 1.19 1.19 1.19 1.19 1.19 1.12 1.15 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 0.58 0.58 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.80 0.22	76.5	0.78	0.78	1.25	0.78	0.78	0.63	1.25	1.25	1.25
91.8 0.70 0.70 0.76 0.56 1.12 1.15 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.79 <t< td=""><td>84.15</td><td>0.74</td><td>0.74</td><td>1.19</td><td>0.74</td><td>0.74</td><td>0.60</td><td>1.19</td><td>1.19</td><td>1.19</td></t<>	84.15	0.74	0.74	1.19	0.74	0.74	0.60	1.19	1.19	1.19
99.45 0.66 0.66 1.05 0.66 0.63 1.05 1.05 1.05 "s"= 1 2 3 4 5 6 7 8 9 z - - - - - - - 107.1 0.61 0.61 0.49 0.97 0.97 0.97 0.97 114.75 0.55 0.55 0.88 0.55 0.55 0.44 0.88 0.88 0.88 122.4 0.49 0.49 0.79<	91.8	0.70	0.70	1.12	0.70	0.70	0.56	1.12	1.12	1.12
"s"= 1 2 3 4 5 6 7 8 9 z	99.45	0.66	0.66	1.05	0.66	0.66	0.53	1.05	1.05	1.05
z a a a a a 107.1 0.61 0.61 0.97 0.97 0.97 0.97 0.97 114.75 0.55 0.55 0.88 0.55 0.55 0.44 0.88 0.88 0.88 122.4 0.49 0.49 0.79 0.49 0.49 0.39 0.79 0.79 0.79 130.05 0.43 0.43 0.69 0.43 0.43 0.34 0.69 0.69 0.69 137.7 0.36 0.36 0.58 0.36 0.29 0.23 0.46 0.46 0.46 153 0.21 0.21 0.33 0.21 0.21 0.16 0.16 0.033 0.33 0.33 153 0.21 0.21 0.33 0.23 0.33 0.33 0.33 0.33 153 0.21 0.21 0.07 0.07 0.07 0.06 0.16 0.16 0.16 0.16 0.16	"s"=	1	2	3	4	5	6	7	8	9
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Z									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	107.1	0.61	0.61	0.97	0.61	0.61	0.49	0.97	0.97	0.97
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	114.75	0.55	0.55	0.88	0.55	0.55	0.44	0.88	0.88	0.88
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	122.4	0.49	0.49	0.79	0.49	0.49	0.39	0.79	0.79	0.79
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	130.05	0.43	0.43	0.69	0.43	0.43	0.34	0.69	0.69	0.69
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	137.7	0.36	0.36	0.58	0.36	0.36	0.29	0.58	0.58	0.58
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	145.35	0.29	0.29	0.46	0.29	0.29	0.23	0.46	0.46	0.46
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	153	0.21	0.21	0.33	0.21	0.21	0.16	0.33	0.33	0.33
$\begin{array}{c} 153 \ 0.21 \ 0.21 \ 0.33 \ 0.21 \ 0.21 \ 0.16 \ 0.33 \ 0.33 \ 0.33 \\ 165.6 \ 0.07 \ 0.07 \ 0.12 \ 0.07 \ 0.07 \ 0.06 \ 0.12 \ 0.12 \ 0.12 \\ 178.2 \ -0.05 \ -0.05 \ -0.07 \ -0.05 \ -0.05 \ -0.04 \ -0.07 \ -0.07 \ -0.07 \\ 190.8 \ -0.16 \ -0.16 \ -0.26 \ -0.16 \ -0.16 \ -0.13 \ -0.26 \ -0.26 \ -0.26 \\ -0.26 \ -0.26 \ -0.26 \ -0.26 \ -0.26 \ -0.26 \ -0.26 \ -0.26 \ -0.26 \\ -0.26 \ -0.26 \ -0.26 \ -0.26 \ -0.26 \ -0.26 \ -0.26 \ -0.26 \ -0.26 \\ -0.26 \ -0.26 \ -0.26 \ -0.26 \ -0.26 \ -0.26 \ -0.26 \ -0.26 \ -0.26 \\ -0.26 \ -0.$										
$\begin{array}{c} 165.6 & 0.07 & 0.07 & 0.12 & 0.07 & 0.06 & 0.12 & 0.12 & 0.12 \\ 178.2 & -0.05 & -0.05 & -0.07 & -0.05 & -0.05 & -0.04 & -0.07 & -0.07 \\ 190.8 & -0.16 & -0.16 & -0.26 & -0.16 & -0.13 & -0.26 & -0.26 & -0.26 \\ 203.4 & -0.26 & -0.26 & -0.24 & -0.26 & -0.26 & -0.21 & -0.42 & -0.42 & -0.42 \\ 216 & -0.36 & -0.36 & -0.58 & -0.36 & -0.36 & -0.29 & -0.58 & -0.58 & -0.58 \\ 228.6 & -0.46 & -0.46 & -0.73 & -0.46 & -0.46 & -0.36 & -0.73 & -0.73 & -0.73 \\ 241.2 & -0.54 & -0.54 & -0.54 & -0.54 & -0.54 & -0.43 & -0.87 & -0.87 \\ 253.8 & -0.63 & -0.63 & -1.00 & -0.63 & -0.63 & -0.50 & -1.00 & -1.00 \\ 266.4 & -0.70 & -0.70 & -1.13 & -0.70 & -0.70 & -0.56 & -1.13 & -1.13 & -1.13 \\ 279 & -0.78 & -0.78 & -1.25 & -0.78 & -0.78 & -0.62 & -1.25 & -1.25 & -1.25 \\ 287.1 & -0.82 & -0.82 & -1.32 & -0.82 & -0.66 & -1.32 & -1.32 & -1.32 \\ 295.2 & -0.85 & -0.85 & -1.36 & -0.85 & -0.68 & -1.36 & -1.36 & -1.36 \\ 303.3 & -0.87 & -0.87 & -1.39 & -0.87 & -0.70 & -1.49 & -1.40 & -1.40 \\ 327.6 & -0.86 & -0.86 & -1.37 & -0.87 & -0.70 & -1.49 & -1.40 & -1.40 \\ 327.6 & -0.86 & -0.86 & -1.37 & -0.87 & -0.79 & -0.79 & -1.33 & -1.33 & -1.33 \\ 343.8 & -0.79 & -0.79 & -1.27 & -0.79 & -0.79 & -0.63 & -1.27 & -1.27 & -1.27 \\ 351.9 & -0.74 & -0.74 & -1.19 & -0.74 & -0.74 & -0.59 & -1.19 & -1.19 & -1.19 \\ 360 & -0.68 & -0.68 & -1.09 & -0.68 & -0.68 & -0.54 & -1.09 & -1.09 & -1.09 \\ \hline 360 & -0.68 & -0.68 & -1.09 & -0.68 & -0.68 & -0.54 & -1.09 & -1.09 & -1.09 \\ \hline 360 & -0.68 & -0.68 & -1.09 & -0.68 & -0.68 & -0.54 & -1.09 & -1.09 & -1.09 \\ \hline 360 & -0.68 & -0.68 & -1.09 & -0.68 & -0.68 & -0.54 & -1.09 & -1.09 & -1.09 \\ \hline 360 & -0.68 & -0.68 & -1.09 & -0.68 & -0.68 & -0.54 & -1.09 & -1.09 & -1.09 \\ \hline 360 & -0.68 & -0.68 & -1.09 & -0.68 & -0.68 & -0.54 & -1.09 & -1.09 & -1.09 \\ \hline 360 & -0.68 & -0.68 & -0.054 & -0.34 & -0.34 & -0.27 & -0.54 & -0.54 & -0.54 & -0.54 \\ \hline 420 & -0.27 & -0.27 & -0.27 & -0.27 & -0.22 & -0.44 & -0.44 & -0.44 \\ \hline 420 & -0.27 & -0.27 & -0.27 & -0.27 & -0.22 & -0.44 & -0.44 & -0.44 \\ \hline 420 & -0.27 & -0.27 & -0.27 & -0.27 & -0.22 & -0.4$	153	0.21	0.21	0.33	0.21	0.21	0.16	0.33	0.33	0.33
$\begin{array}{c} 178.2 - 0.05 - 0.05 - 0.07 - 0.05 - 0.05 - 0.04 - 0.07 - 0.07 - 0.07 \\ \hline 190.8 - 0.16 - 0.16 - 0.26 - 0.16 - 0.16 - 0.13 - 0.26 - 0.26 - 0.26 \\ \hline 203.4 - 0.26 - 0.26 - 0.42 - 0.26 - 0.26 - 0.21 - 0.42 - 0.42 - 0.42 \\ \hline 216 - 0.36 - 0.36 - 0.58 - 0.36 - 0.36 - 0.29 - 0.58 - 0.58 - 0.58 \\ \hline 228.6 - 0.46 - 0.46 - 0.73 - 0.46 - 0.46 - 0.36 - 0.73 - 0.73 - 0.73 \\ \hline 241.2 - 0.54 - 0.54 - 0.87 - 0.54 - 0.54 - 0.43 - 0.87 - 0.87 - 0.87 \\ \hline 253.8 - 0.63 - 0.63 - 1.00 - 0.63 - 0.63 - 0.50 - 1.00 - 1.00 - 1.00 \\ \hline 266.4 - 0.70 - 0.70 - 1.13 - 0.70 - 0.70 - 0.56 - 1.13 - 1.13 - 1.13 \\ \hline 279 - 0.78 - 0.78 - 1.25 - 0.78 - 0.78 - 0.62 - 1.25 - 1.25 - 1.25 \\ \hline 279 - 0.78 - 0.78 - 1.25 - 0.78 - 0.78 - 0.62 - 1.25 - 1.25 - 1.25 \\ \hline 287.1 - 0.82 - 0.82 - 1.32 - 0.82 - 0.82 - 0.66 - 1.32 - 1.32 - 1.32 \\ \hline 295.2 - 0.85 - 0.85 - 1.36 - 0.85 - 0.68 - 1.36 - 1.36 - 1.36 \\ \hline 303.3 - 0.87 - 0.87 - 1.39 - 0.87 - 0.87 - 0.70 - 1.39 - 1.39 - 1.39 \\ \hline 311.4 - 0.88 - 0.88 - 1.41 - 0.88 - 0.88 - 0.70 - 1.41 - 1.41 - 1.41 \\ \hline 319.5 - 0.87 - 0.87 - 1.40 - 0.87 - 0.87 - 0.70 - 1.39 - 1.39 - 1.37 \\ \hline 35.7 - 0.83 - 0.83 - 1.33 - 0.83 - 0.83 - 0.67 - 1.33 - 1.33 - 1.33 \\ \hline 343.8 - 0.79 - 0.79 - 1.27 - 0.79 - 0.79 - 0.63 - 1.27 - 1.27 - 1.27 \\ \hline 351.9 -0.74 - 0.74 - 1.19 - 0.74 - 0.74 - 0.59 - 1.19 - 1.19 - 1.19 \\ \hline 360 - 0.68 - 0.68 - 1.09 - 0.68 - 0.68 - 0.54 - 1.09 - 1.09 - 1.09 \\ \hline 372 - 0.58 - 0.58 - 0.93 - 0.58 - 0.58 - 0.47 - 0.93 - 0.93 - 0.93 \\ \hline 384 - 0.49 - 0.49 - 0.79 - 0.49 - 0.49 - 0.40 - 0.79 - 0.79 - 0.79 \\ \hline 372 - 0.58 - 0.58 - 0.93 - 0.58 - 0.58 - 0.47 - 0.93 - 0.93 - 0.93 \\ \hline 384 - 0.49 - 0.49 - 0.79 - 0.49 - 0.49 - 0.40 - 0.79 - 0.79 - 0.79 \\ \hline 372 - 0.58 - 0.58 - 0.93 - 0.58 - 0.58 - 0.47 - 0.93 - 0.93 - 0.93 \\ \hline 384 - 0.49 - 0.49 - 0.79 - 0.49 - 0.49 - 0.40 - 0.79 - 0.79 - 0.79 \\ \hline 396 - 0.41 - 0.41 - 0.66 - 0.41 - 0.41 - 0.33 - 0.66 - 0.66 - 0.66 \\ \hline 408 - 0.34 - 0.34 - 0.54 - 0.34 - 0.34 - 0.27 - 0.54 - 0.54 - 0.54 \\ \hline 420 - 0.27 - 0.27 - 0.44 - 0.27 - 0.27 - 0.22 - 0.44 - 0.44 - 0.44 \\ \hline 0.41 - 0.41 - 0.41 - 0.33 - 0.$	165.6	0.07	0.07	0.12	0.07	0.07	0.06	0.12	0.12	0.12
$\begin{array}{c} 190.8 & -0.16 & -0.16 & -0.26 & -0.16 & -0.16 & -0.13 & -0.26 & -0.26 & -0.26 & -0.22 & -0.26 & -0.22 & -0.44 & -0.46 & -0.36 & -0.73 & -0.78 & -0.78 & -0.62 & -1.25 & -0.78 & -0.78 & -0.62 & -1.25 &$	178.2	-0.05	-0.05	-0.07	-0.05	-0.05	-0.04	-0.07	-0.07	-0.07
$\begin{array}{c} 203.4 - 0.26 - 0.26 - 0.42 - 0.26 - 0.26 - 0.21 - 0.42 - 0.42 - 0.42 \\ 216 - 0.36 - 0.36 - 0.58 - 0.36 - 0.36 - 0.29 - 0.58 - 0.58 - 0.58 \\ 228.6 - 0.46 - 0.46 - 0.73 - 0.46 - 0.46 - 0.36 - 0.73 - 0.73 - 0.73 \\ 241.2 - 0.54 - 0.54 - 0.87 - 0.54 - 0.54 - 0.43 - 0.87 - 0.87 - 0.87 \\ 253.8 - 0.63 - 0.63 - 1.00 - 0.63 - 0.63 - 0.50 - 1.00 - 1.00 \\ 266.4 - 0.70 - 0.70 - 1.13 - 0.70 - 0.70 - 0.56 - 1.13 - 1.13 - 1.13 \\ 279 - 0.78 - 0.78 - 1.25 - 0.78 - 0.78 - 0.62 - 1.25 - 1.25 - 1.25 \\ 287.1 - 0.82 - 0.82 - 1.32 - 0.82 - 0.82 - 0.66 - 1.32 - 1.32 - 1.32 \\ 295.2 - 0.85 - 0.85 - 1.36 - 0.85 - 0.85 - 0.68 - 1.36 - 1.36 - 1.36 \\ 303.3 - 0.87 - 0.87 - 1.39 - 0.87 - 0.87 - 0.70 - 1.49 - 1.39 - 1.39 \\ 311.4 - 0.88 - 0.88 - 1.41 - 0.88 - 0.88 - 0.70 - 1.41 - 1.41 - 1.41 \\ 319.5 - 0.87 - 0.87 - 1.40 - 0.87 - 0.87 - 0.70 - 1.40 - 1.40 - 1.40 \\ 327.6 - 0.86 - 0.86 - 1.37 - 0.86 - 0.86 - 0.69 - 1.37 - 1.37 - 1.37 \\ 335.7 - 0.83 - 0.83 - 1.33 - 0.83 - 0.83 - 0.67 - 1.33 - 1.33 - 1.33 \\ 343.8 - 0.79 - 0.79 - 1.27 - 0.79 - 0.79 - 0.63 - 1.27 - 1.27 - 1.27 \\ 351.9 - 0.74 - 0.74 - 1.19 - 0.74 - 0.74 - 0.59 - 1.19 - 1.19 - 1.19 \\ 360 - 0.68 - 0.68 - 1.09 - 0.68 - 0.68 - 0.54 - 1.09 - 1.09 - 1.09 \\ 372 - 0.58 - 0.58 - 0.93 - 0.58 - 0.58 - 0.47 - 0.93 - 0.93 - 0.93 \\ 384 - 0.49 - 0.49 - 0.79 - 0.49 - 0.49 - 0.40 - 0.79 - 0.79 - 0.79 \\ 384 - 0.49 - 0.49 - 0.79 - 0.49 - 0.49 - 0.40 - 0.79 - 0.79 - 0.79 \\ 384 - 0.49 - 0.49 - 0.79 - 0.49 - 0.49 - 0.40 - 0.79 - 0.79 - 0.79 \\ 384 - 0.49 - 0.49 - 0.79 - 0.49 - 0.49 - 0.40 - 0.79 - 0.79 - 0.79 \\ 384 - 0.49 - 0.49 - 0.79 - 0.49 - 0.49 - 0.40 - 0.79 - 0.79 - 0.79 \\ 384 - 0.49 - 0.49 - 0.79 - 0.49 - 0.49 - 0.40 - 0.79 - 0.79 - 0.79 \\ 396 - 0.41 - 0.41 - 0.66 - 0.41 - 0.41 - 0.33 - 0.66 - 0.66 - 0.66 \\ 408 - 0.34 - 0.34 - 0.54 - 0.34 - 0.34 - 0.27 - 0.54 - 0.54 - 0.54 \\ 420 - 0.27 - 0.27 - 0.27 - 0.27 - 0.27 - 0.22 - 0.44 - 0.44 - 0.44 \\ 420 - 0.27 - 0.27 - 0.27 - 0.27 - 0.27 - 0.22 - 0.44 - 0.44 - 0.44 \\ 420 - 0.27 - 0.27 - 0.27 - 0.27 - 0.27 - 0.22 - 0.44 - 0.44 - 0.44 \\ 420 - 0.27 - 0.27$	190.8	-0.16	-0.16	-0.26	-0.16	-0.16	-0.13	-0.26	-0.26	-0.26
$\begin{array}{c} 216 - 0.36 - 0.36 - 0.58 - 0.36 - 0.36 - 0.29 - 0.58 - 0.58 - 0.58 \\ 228.6 - 0.46 - 0.46 - 0.73 - 0.46 - 0.46 - 0.36 - 0.73 - 0.73 - 0.73 \\ 241.2 - 0.54 - 0.54 - 0.87 - 0.54 - 0.54 - 0.43 - 0.87 - 0.87 - 0.87 \\ 253.8 - 0.63 - 0.63 - 1.00 - 0.63 - 0.63 - 0.50 - 1.00 - 1.00 - 1.00 \\ 266.4 - 0.70 - 0.70 - 1.13 - 0.70 - 0.70 - 0.56 - 1.13 - 1.13 - 1.13 \\ 279 - 0.78 - 0.78 - 1.25 - 0.78 - 0.78 - 0.62 - 1.25 - 1.25 - 1.25 \\ 287.1 - 0.82 - 0.82 - 1.32 - 0.82 - 0.82 - 0.66 - 1.32 - 1.32 - 1.32 \\ 295.2 - 0.85 - 0.85 - 1.36 - 0.85 - 0.85 - 0.68 - 1.36 - 1.36 - 1.36 \\ 303.3 - 0.87 - 0.87 - 1.39 - 0.87 - 0.87 - 0.70 - 1.39 - 1.39 - 1.39 \\ 311.4 - 0.88 - 0.88 - 1.41 - 0.88 - 0.88 - 0.70 - 1.41 - 1.41 - 1.41 \\ 319.5 - 0.87 - 0.87 - 1.40 - 0.87 - 0.87 - 0.70 - 1.40 - 1.40 - 1.40 \\ 327.6 - 0.86 - 0.86 - 1.37 - 0.86 - 0.86 - 0.69 - 1.37 - 1.37 - 1.37 \\ 335.7 - 0.83 - 0.83 - 1.33 - 0.83 - 0.83 - 0.67 - 1.33 - 1.33 - 1.33 \\ 343.8 - 0.79 - 0.79 - 1.27 - 0.79 - 0.79 - 0.63 - 1.27 - 1.27 - 1.27 \\ 351.9 - 0.74 - 0.74 - 1.19 - 0.74 - 0.74 - 0.59 - 1.19 - 1.19 - 1.19 \\ 360 - 0.68 - 0.68 - 1.09 - 0.68 - 0.68 - 0.54 - 1.09 - 1.09 - 1.09 \\ 372 - 0.58 - 0.58 - 0.93 - 0.58 - 0.58 - 0.47 - 0.93 - 0.93 - 0.93 \\ 384 - 0.49 - 0.49 - 0.79 - 0.79 - 0.49 - 0.40 - 0.79 - 0.79 - 0.79 \\ 396 - 0.41 - 0.41 - 0.66 - 0.41 - 0.41 - 0.33 - 0.66 - 0.66 - 0.66 \\ 408 - 0.34 - 0.34 - 0.54 - 0.34 - 0.34 - 0.27 - 0.54 - 0.54 - 0.54 \\ 420 - 0.27 - 0.27 - 0.27 - 0.27 - 0.27 - 0.22 - 0.44 - 0.44 - 0.44 \\ \end{array}$	203.4	-0.26	-0.26	-0.42	-0.26	-0.26	-0.21	-0.42	-0.42	-0.42
$\begin{array}{c} 228.6 & -0.46 & -0.46 & -0.73 & -0.46 & -0.46 & -0.36 & -0.73 & -0.73 & -0.73 \\ 241.2 & -0.54 & -0.54 & -0.87 & -0.54 & -0.54 & -0.43 & -0.87 & -0.87 \\ 253.8 & -0.63 & -0.63 & -1.00 & -0.63 & -0.63 & -0.50 & -1.00 & -1.00 \\ 266.4 & -0.70 & -0.70 & -1.13 & -0.70 & -0.70 & -0.56 & -1.13 & -1.13 \\ \hline 279 & -0.78 & -0.78 & -1.25 & -0.78 & -0.78 & -0.62 & -1.25 & -1.25 & -1.25 \\ \hline & & & & & & & & & & & & & & & & & &$	216	-0.36	-0.36	-0.58	-0.36	-0.36	-0.29	-0.58	-0.58	-0.58
$\begin{array}{c} 241.2 & -0.54 & -0.54 & -0.54 & -0.54 & -0.43 & -0.87 & -0.87 \\ 253.8 & -0.63 & -0.63 & -1.00 & -0.63 & -0.63 & -0.50 & -1.00 & -1.00 \\ 266.4 & -0.70 & -0.70 & -1.13 & -0.70 & -0.70 & -0.56 & -1.13 & -1.13 \\ \hline 279 & -0.78 & -0.78 & -1.25 & -0.78 & -0.78 & -0.62 & -1.25 & -1.25 & -1.25 \\ \hline 287.1 & -0.82 & -0.82 & -1.32 & -0.82 & -0.82 & -0.66 & -1.32 & -1.32 \\ 295.2 & -0.85 & -0.85 & -1.36 & -0.85 & -0.85 & -0.68 & -1.36 & -1.36 \\ \hline 303.3 & -0.87 & -0.87 & -1.39 & -0.87 & -0.78 & -0.70 & -1.39 & -1.39 & -1.39 \\ \hline 311.4 & -0.88 & -0.88 & -1.41 & -0.88 & -0.88 & -0.70 & -1.41 & -1.41 \\ \hline 319.5 & -0.87 & -0.87 & -1.40 & -0.87 & -0.87 & -0.70 & -1.49 & -1.40 \\ \hline 327.6 & -0.86 & -0.86 & -1.37 & -0.86 & -0.86 & -0.69 & -1.37 & -1.37 \\ \hline 35.7 & -0.83 & -0.83 & -1.33 & -0.83 & -0.83 & -0.67 & -1.33 & -1.33 \\ \hline 343.8 & -0.79 & -0.79 & -1.27 & -0.79 & -0.79 & -0.63 & -1.27 & -1.27 & -1.27 \\ \hline 351.9 & -0.74 & -0.74 & -1.19 & -0.74 & -0.74 & -0.59 & -1.19 & -1.19 \\ \hline 360 & -0.68 & -0.68 & -1.09 & -0.68 & -0.68 & -0.54 & -1.09 & -1.09 & -1.09 \\ \hline 372 & -0.58 & -0.58 & -0.93 & -0.58 & -0.58 & -0.47 & -0.93 & -0.93 \\ \hline 384 & -0.49 & -0.49 & -0.79 & -0.49 & -0.49 & -0.40 & -0.79 & -0.79 & -0.79 \\ \hline 384 & -0.49 & -0.49 & -0.79 & -0.49 & -0.49 & -0.40 & -0.79 & -0.79 & -0.79 \\ \hline 384 & -0.49 & -0.49 & -0.79 & -0.49 & -0.49 & -0.40 & -0.79 & -0.79 & -0.79 \\ \hline 384 & -0.49 & -0.49 & -0.79 & -0.49 & -0.49 & -0.40 & -0.79 & -0.79 & -0.79 \\ \hline 396 & -0.41 & -0.41 & -0.66 & -0.41 & -0.41 & -0.33 & -0.66 & -0.66 & -0.66 \\ \hline 408 & -0.34 & -0.34 & -0.54 & -0.34 & -0.27 & -0.27 & -0.24 & -0.54 & -0.54 \\ \hline 420 & -0.27 & -0.27 & -0.27 & -0.27 & -0.22 & -0.44 & -0.44 & -0.44 \\ \hline \end{array}$	228.6	-0.46	-0.46	-0.73	-0.46	-0.46	-0.36	-0.73	-0.73	-0.73
$\begin{array}{c} 253.8 & -0.63 & -0.63 & -1.00 & -0.63 & -0.63 & -0.50 & -1.00 & -1.00 \\ \hline 266.4 & -0.70 & -0.70 & -1.13 & -0.70 & -0.70 & -0.56 & -1.13 & -1.13 & -1.13 \\ \hline 279 & -0.78 & -0.78 & -1.25 & -0.78 & -0.78 & -0.62 & -1.25 & -1.25 & -1.25 \\ \hline & & & & & & & & & & & & & & & & & &$	241.2	-0.54	-0.54	-0.87	-0.54	-0.54	-0.43	-0.87	-0.87	-0.87
$\begin{array}{c} 266.4 - 0.70 - 0.70 - 1.13 - 0.70 - 0.70 - 0.56 - 1.13 - 1.13 - 1.13 \\ \hline 279 - 0.78 - 0.78 - 1.25 - 0.78 - 0.78 - 0.62 - 1.25 - 1.25 - 1.25 \\ \hline 279 - 0.78 - 0.78 - 1.25 - 0.78 - 0.78 - 0.62 - 1.25 - 1.25 - 1.25 \\ \hline 287.1 - 0.82 - 0.82 - 1.32 - 0.82 - 0.82 - 0.66 - 1.32 - 1.32 - 1.32 \\ \hline 295.2 - 0.85 - 0.85 - 1.36 - 0.85 - 0.85 - 0.68 - 1.36 - 1.36 - 1.36 \\ \hline 303.3 - 0.87 - 0.87 - 1.39 - 0.87 - 0.87 - 0.70 - 1.39 - 1.39 - 1.39 \\ \hline 311.4 - 0.88 - 0.88 - 1.41 - 0.88 - 0.88 - 0.70 - 1.41 - 1.41 - 1.41 \\ \hline 319.5 - 0.87 - 0.87 - 1.40 - 0.87 - 0.87 - 0.70 - 1.40 - 1.40 - 1.40 \\ \hline 327.6 - 0.86 - 0.86 - 1.37 - 0.86 - 0.86 - 0.69 - 1.37 - 1.37 - 1.37 \\ \hline 335.7 - 0.83 - 0.83 - 1.33 - 0.83 - 0.83 - 0.67 - 1.33 - 1.33 - 1.33 \\ \hline 343.8 - 0.79 - 0.79 - 1.27 - 0.79 - 0.79 - 0.63 - 1.27 - 1.27 - 1.27 \\ \hline 351.9 - 0.74 - 0.74 - 1.19 - 0.74 - 0.74 - 0.59 - 1.19 - 1.19 - 1.19 \\ \hline 360 - 0.68 - 0.68 - 1.09 - 0.68 - 0.68 - 0.54 - 1.09 - 1.09 - 1.09 \\ \hline 360 - 0.68 - 0.68 - 1.09 - 0.68 - 0.68 - 0.54 - 1.09 - 1.09 - 1.09 \\ \hline 384 - 0.49 - 0.49 - 0.79 - 0.49 - 0.49 - 0.40 - 0.79$	253.8	-0.63	-0.63	-1.00	-0.63	-0.63	-0.50	-1.00	-1.00	-1.00
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	266.4	-0.70	-0.70	-1.13	-0.70	-0.70	-0.56	-1.13	-1.13	-1.13
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	279	-0.78	-0.78	-1.25	-0.78	-0.78	-0.62	-1.25	-1.25	-1.25
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	279	-0.78	-0.78	-1.25	-0.78	-0.78	-0.62	-1.25	-1.25	-1.25
$\begin{array}{c} 295.2 \\ -0.85 \\ -0.85 \\ -0.85 \\ -0.85 \\ -0.85 \\ -0.85 \\ -0.87 \\$	287.1	-0.82	-0.82	-1.32	-0.82	-0.82	-0.66	-1.32	-1.32	-1.32
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	295.2	-0.85	-0.85	-1.36	-0.85	-0.85	-0.68	-1.36	-1.36	-1.36
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	303.3	-0.87	-0.87	-1.39	-0.87	-0.87	-0.70	-1.39	-1.39	-1.39
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	311.4	-0.88	-0.88	-1.41	-0.88	-0.88	-0.70	-1.41	-1.41	-1.41
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	319.5	-0.87	-0.87	-1.40	-0.87	-0.87	-0.70	-1.40	-1.40	-1.40
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	327.6	-0.86	-0.86	-1.37	-0.86	-0.86	-0.69	-1.37	-1.37	-1.37
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	335.7	-0.83	-0.83	-1.33	-0.83	-0.83	-0.67	-1.33	-1.33	-1.33
$\begin{array}{r} 351.9 & -0.74 & -0.74 & -1.19 & -0.74 & -0.74 & -0.59 & -1.19 & -1.19 & -1.19 \\ \hline 360 & -0.68 & -0.68 & -1.09 & -0.68 & -0.68 & -0.54 & -1.09 & -1.09 \\ \hline 360 & -0.68 & -0.68 & -1.09 & -0.68 & -0.68 & -0.54 & -1.09 & -1.09 \\ \hline 372 & -0.58 & -0.58 & -0.93 & -0.58 & -0.58 & -0.47 & -0.93 & -0.93 \\ \hline 384 & -0.49 & -0.49 & -0.79 & -0.49 & -0.49 & -0.40 & -0.79 & -0.79 \\ \hline 396 & -0.41 & -0.41 & -0.66 & -0.41 & -0.41 & -0.33 & -0.66 & -0.66 \\ \hline 408 & -0.34 & -0.34 & -0.54 & -0.34 & -0.34 & -0.27 & -0.54 & -0.54 \\ \hline 420 & -0.27 & -0.27 & -0.44 & -0.27 & -0.22 & -0.44 & -0.44 \\ \hline \end{array}$	343.8	-0.79	-0.79	-1.27	-0.79	-0.79	-0.63	-1.27	-1.27	-1.27
360 -0.68 -0.68 -1.09 -0.68 -0.68 -0.54 -1.09 -1.09 -1.09 360 -0.68 -0.68 -1.09 -0.68 -0.68 -0.54 -1.09 -1.09 -1.09 372 -0.58 -0.58 -0.93 -0.58 -0.58 -0.58 -0.47 -0.93 -0.93 -0.93 384 -0.49 -0.49 -0.79 -0.49 -0.49 -0.40 -0.79 -0.79 -0.79 396 -0.41 -0.41 -0.66 -0.41 -0.41 -0.33 -0.66 -0.66 -0.66 408 -0.34 -0.34 -0.54 -0.34 -0.34 -0.27 -0.54 -0.54 -0.54 420 -0.27 -0.27 -0.44 -0.27 -0.27 -0.22 -0.44 -0.44 -0.44	351.9	-0.74	-0.74	-1.19	-0.74	-0.74	-0.59	-1.19	-1.19	-1.19
360 -0.68 -0.68 -0.68 -0.68 -0.54 -1.09 -	360	-0.68	-0.68	-1.09	-0.68	-0.68	-0.54	-1.09	-1.09	-1.09
360 -0.68 -0.68 -1.09 -0.68 -0.68 -0.54 -1.09 -1.09 -1.09 372 -0.58 -0.58 -0.93 -0.58 -0.58 -0.47 -0.93 -0.93 -0.93 384 -0.49 -0.49 -0.79 -0.49 -0.49 -0.40 -0.79 -0.79 -0.79 396 -0.41 -0.41 -0.66 -0.41 -0.41 -0.33 -0.66 -0.66 -0.66 408 -0.34 -0.34 -0.54 -0.34 -0.34 -0.27 -0.54 -0.54 -0.54 420 -0.27 -0.27 -0.44 -0.27 -0.27 -0.22 -0.44 -0.44 -0.44										
372 -0.58 -0.58 -0.93 -0.58 -0.58 -0.47 -0.93 -0.93 -0.93 384 -0.49 -0.49 -0.79 -0.49 -0.49 -0.40 -0.79 -0.79 -0.79 396 -0.41 -0.41 -0.66 -0.41 -0.41 -0.33 -0.66 -0.66 -0.66 408 -0.34 -0.34 -0.54 -0.34 -0.34 -0.27 -0.54 -0.54 -0.54 420 -0.27 -0.27 -0.44 -0.27 -0.27 -0.22 -0.44 -0.44 -0.44	360	-0.68	-0.68	-1.09	-0.68	-0.68	-0.54	-1.09	-1.09	-1.09
384-0.49-0.49-0.79-0.49-0.49-0.40-0.79-0.79-0.79 396-0.41-0.41-0.66-0.41-0.41-0.33-0.66-0.66-0.66 408-0.34-0.34-0.54-0.34-0.34-0.27-0.54-0.54-0.54 420-0.27-0.27-0.44-0.27-0.27-0.22-0.44-0.44-0.44	372	-0.58	-0.58	-0.93	-0.58	-0.58	-0.47	-0.93	-0.93	-0.93
396-0.41-0.41-0.66-0.41-0.41-0.33-0.66-0.66-0.66 408-0.34-0.34-0.54-0.34-0.34-0.27-0.54-0.54-0.54 420-0.27-0.27-0.44-0.27-0.27-0.22-0.44-0.44-0.44	384	-0.49	-0.49	-0.79	-0.49	-0.49	-0.40	-0.79	-0.79	-0.79
408-0.34-0.34-0.54-0.34-0.34-0.27-0.54-0.54-0.54 420-0.27-0.27-0.44-0.27-0.27-0.22-0.44-0.44	396	-0.41	-0.41	-0.66	-0.41	-0.41	-0.33	-0.66	-0.66	-0.66
420-0.27-0.27-0.44-0.27-0.27-0.22-0.44-0.44-0.44	408	-0.34	-0.34	-0.54	-0.34	-0.34	-0.27	-0.54	-0.54	-0.54
	420									
432-0.21-0.21-0.34-0.21-0.21-0.17-0.34-0.34-0.34	120	-0.27	-0.27	-0.44	-0.27	-0.27	-0.22	-0.44	-0.44	-0.44

444	-0.16	-0.16	-0.25	-0.16	-0.16	-0.13	-0.25	-0.25	-0.25
456	-0.11	-0.11	-0.17	-0.11	-0.11	-0.08	-0.17	-0.17	-0.17
468	-0.06	-0.06	-0.10	-0.06	-0.06	-0.05	-0.10	-0.10	-0.10
480	-0.02	-0.02	-0.03	-0.02	-0.02	-0.02	-0.03	-0.03	-0.03
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
"s"=	1	2	3	4	5	6	7	8	9
Z									
480	-0.02	-0.02	-0.03	-0.02	-0.02	-0.02	-0.03	-0.03	-0.03
492	0.02	0.02	0.03	0.02	0.02	0.01	0.03	0.03	0.03
504	0.05	0.05	0.08	0.05	0.05	0.04	0.08	0.08	0.08
516	0.08	0.08	0.13	0.08	0.08	0.06	0.13	0.13	0.13
528	0.10	0.10	0.17	0.10	0.10	0.08	0.17	0.17	0.17
540	0.13	0.13	0.20	0.13	0.13	0.10	0.20	0.20	0.20
552	0.15	0.15	0.23	0.15	0.15	0.12	0.23	0.23	0.23
564	0.16	0.16	0.26	0.16	0.16	0.13	0.26	0.26	0.26
576	0.18	0.18	0.28	0.18	0.18	0.14	0.28	0.28	0.28
588	0.19	0.19	0.30	0.19	0.19	0.15	0.30	0.30	0.30
600	0.19	0.19	0.31	0.19	0.19	0.16	0.31	0.31	0.31
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
600	0.19	0.19	0.31	0.19	0.19	0.16	0.31	0.31	0.31
612	0.20	0.20	0.32	0.20	0.20	0.16	0.32	0.32	0.32
624	0.20	0.20	0.32	0.20	0.20	0.16	0.32	0.32	0.32
636	0.20	0.20	0.32	0.20	0.20	0.16	0.32	0.32	0.32
648	0.20	0.20	0.32	0.20	0.20	0.16	0.32	0.32	0.32
660	0.20	0.20	0.31	0.20	0.20	0.16	0.31	0.31	0.31
672	0.19	0.19	0.30	0.19	0.19	0.15	0.30	0.30	0.30
684	0.18	0.18	0.29	0.18	0.18	0.14	0.29	0.29	0.29
696	0.17	0.17	0.27	0.17	0.17	0.13	0.27	0.27	0.27
708	0.15	0.15	0.24	0.15	0.15	0.12	0.24	0.24	0.24
720	0.13	0.13	0.21	0.13	0.13	0.11	0.21	0.21	0.21
720	0.13	0.13	0.21	0.13	0.13	0.11	0.21	0.21	0.21
732	0.11	0.11	0.18	0.11	0.11	0.09	0.18	0.18	0.18
744	0.10	0.10	0.15	0.10	0.10	0.08	0.15	0.15	0.15
756	0.08	0.08	0.13	0.08	0.08	0.06	0.13	0.13	0.13
768	0.07	0.07	0.11	0.07	0.07	0.05	0.11	0.11	0.11
780	0.05	0.05	0.09	0.05	0.05	0.04	0.09	0.09	0.09
792	0.04	0.04	0.07	0.04	0.04	0.03	0.07	0.07	0.07
804	0.03	0.03	0.05	0.03	0.03	0.02	0.05	0.05	0.05
816	0.02	0.02	0.03	0.02	0.02	0.02	0.03	0.03	0.03
828	0.01	0.01	0.02	0.01	0.01	0.01	0.02	0.02	0.02
840	0.00	0.00	0.01	0.00	0.00	0.00	0.01	0.01	0.01
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
840	0.00	0.00	0.01	0.00	0.00	0.00	0.01	0.01	0.01
852	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

864	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01
876	-0.02	-0.02	-0.02	-0.02	-0.02	-0.01	-0.02	-0.02	-0.02
888	-0.02	-0.02	-0.03	-0.02	-0.02	-0.02	-0.03	-0.03	-0.03
900	-0.02	-0.02	-0.04	-0.02	-0.02	-0.02	-0.04	-0.04	-0.04
912	-0.03	-0.03	-0.05	-0.03	-0.03	-0.02	-0.05	-0.05	-0.05
924	-0.03	-0.03	-0.05	-0.03	-0.03	-0.03	-0.05	-0.05	-0.05
"s"=	1	2	3	4	5	6	7	8	9
Z									
936	-0.03	-0.03	-0.05	-0.03	-0.03	-0.03	-0.05	-0.05	-0.05
948	-0.04	-0.04	-0.06	-0.04	-0.04	-0.03	-0.06	-0.06	-0.06
960	-0.04	-0.04	-0.06	-0.04	-0.04	-0.03	-0.06	-0.06	-0.06
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
960	-0.04	-0.04	-0.06	-0.04	-0.04	-0.03	-0.06	-0.06	-0.06
972	-0.04	-0.04	-0.06	-0.04	-0.04	-0.03	-0.06	-0.06	-0.06
984	-0.04	-0.04	-0.06	-0.04	-0.04	-0.03	-0.06	-0.06	-0.06
996	-0.04	-0.04	-0.06	-0.04	-0.04	-0.03	-0.06	-0.06	-0.06
1008	-0.04	-0.04	-0.06	-0.04	-0.04	-0.03	-0.06	-0.06	-0.06
1020	-0.04	-0.04	-0.06	-0.04	-0.04	-0.03	-0.06	-0.06	-0.06
1032	-0.04	-0.04	-0.06	-0.04	-0.04	-0.03	-0.06	-0.06	-0.06
1044	-0.04	-0.04	-0.06	-0.04	-0.04	-0.03	-0.06	-0.06	-0.06
1056	-0.03	-0.03	-0.05	-0.03	-0.03	-0.03	-0.05	-0.05	-0.05
1068	-0.03	-0.03	-0.05	-0.03	-0.03	-0.02	-0.05	-0.05	-0.05
1080	-0.03	-0.03	-0.04	-0.03	-0.03	-0.02	-0.04	-0.04	-0.04
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1080	-0.03	-0.03	-0.04	-0.03	-0.03	-0.02	-0.04	-0.04	-0.04
1092	-0.02	-0.02	-0.04	-0.02	-0.02	-0.02	-0.04	-0.04	-0.04
1104	-0.02	-0.02	-0.03	-0.02	-0.02	-0.02	-0.03	-0.03	-0.03
1116	-0.02	-0.02	-0.03	-0.02	-0.02	-0.01	-0.03	-0.03	-0.03
1128	-0.01	-0.01	-0.02	-0.01	-0.01	-0.01	-0.02	-0.02	-0.02
1140	-0.01	-0.01	-0.02	-0.01	-0.01	-0.01	-0.02	-0.02	-0.02
1152	-0.01	-0.01	-0.02	-0.01	-0.01	-0.01	-0.02	-0.02	-0.02
1164	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01
1176	-0.01	-0.01	-0.01	-0.01	-0.01	0.00	-0.01	-0.01	-0.01
1188	0.00	0.00	-0.01	0.00	0.00	0.00	-0.01	-0.01	-0.01
1200	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1200	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1212	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1224	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1236	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1248	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1260	0.00	0.00	0.01	0.00	0.00	0.00	0.01	0.01	0.01
1272	0.00	0.00	0.01	0.00	0.00	0.00	0.01	0.01	0.01
1284	0.01	0.01	0.01	0.01	0.01	0.00	0.01	0.01	0.01
1296	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01

1308	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
1320	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1320	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
1332	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
1344	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
1356	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
"	1	2	3	Δ	5	6	7	8	9
5 -	1	4	5	-	5	U	'	0	
<u> </u>	1	2	5	т	5	0	,	0)
z 1368	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
z 1368 1380	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
z 1368 1380 1392	0.01 0.01 0.01	0.01 0.01 0.01	0.01 0.02 0.02	0.01 0.01 0.01	0.01 0.01 0.01	0.01 0.01 0.01	0.01 0.02 0.02	0.01 0.02 0.02	0.01 0.02 0.02
z 1368 1380 1392 1404	0.01 0.01 0.01 0.01	0.01 0.01 0.01 0.01	0.01 0.02 0.02 0.02	0.01 0.01 0.01 0.01	0.01 0.01 0.01 0.01	0.01 0.01 0.01 0.01	0.01 0.02 0.02 0.02	0.01 0.02 0.02 0.02	0.01 0.02 0.02 0.02
z 1368 1380 1392 1404 1416	0.01 0.01 0.01 0.01 0.01	0.01 0.01 0.01 0.01 0.01	0.01 0.02 0.02 0.02 0.02	0.01 0.01 0.01 0.01 0.01	0.01 0.01 0.01 0.01 0.01	0.01 0.01 0.01 0.01 0.01	0.01 0.02 0.02 0.02 0.02	0.01 0.02 0.02 0.02 0.02	0.01 0.02 0.02 0.02 0.02
z 1368 1380 1392 1404 1416 1428	0.01 0.01 0.01 0.01 0.01 0.01	0.01 0.01 0.01 0.01 0.01 0.01	0.01 0.02 0.02 0.02 0.02 0.02	0.01 0.01 0.01 0.01 0.01 0.01	0.01 0.01 0.01 0.01 0.01 0.01	0.01 0.01 0.01 0.01 0.01 0.01	0.01 0.02 0.02 0.02 0.02 0.02	0.01 0.02 0.02 0.02 0.02 0.02	0.01 0.02 0.02 0.02 0.02 0.02

Table of Warping Shear Stress along "z" and "s"										
W	arpi	ing Sh	ear Stre	ss at "	s" (-	• E*	Sw*	[∗] θ'''/ t)		
Sw	0.0	84.13	185.15	84.13	0.0	0.0	0.0	376.54	0.0	
"s"=	1	2	3	4	5	6	7	8	9	
z										
0	0	0.03	0.04	0.03	0	0	0	0.09	0	
7.65	0	0.03	0.04	0.03	0	0	0	0.09	0	
15.3	0	0.03	0.04	0.03	0	0	0	0.09	0	
22.95	0	0.03	0.05	0.03	0	0	0	0.09	0	
30.6	0	0.03	0.05	0.03	0	0	0	0.09	0	
38.25	0	0.03	0.05	0.03	0	0	0	0.09	0	
45.9	0	0.03	0.05	0.03	0	0	0	0.10	0	
53.55	0	0.03	0.05	0.03	0	0	0	0.10	0	
61.2	0	0.04	0.05	0.04	0	0	0	0.10	0	
68.85	0	0.04	0.05	0.04	0	0	0	0.10	0	
76.5	0	0.04	0.05	0.04	0	0	0	0.11	0	
76.5	0	0.04	0.05	0.04	0	0	0	0.11	0	
84 15	0	0.04	0.05	0.04	0	0	0	0.11	0	
91.8	0	0.04	0.05	0.04	0	0	0	0.11	0	
99.45	0	0.04	0.05	0.04	0	0	0	0.11	0	
107.1	0	0.04	0.00	0.04	0	0	0	0.12	0	
114 75	0	0.04	0.00	0.04	0	0	0	0.12	0	
122 4	0	0.04	0.00	0.04	0	0	0	0.12	0	
130.05	0	0.05	0.00	0.05	0	0	0	0.13	0	
137.7	0	0.05	0.07	0.05	0	0	0	0.15	0	
145 35	0	0.05	0.07	0.05	0	0	0	0.11	0	
153	0	0.05	0.07	0.05	0	0	0	0.15	0	
100	Ũ	0.00	0.07	0.00	Ũ	0	Ŭ	0.110	Ũ	
153	0	-0.04	-0.05	-0.04	0	0	0	-0.10	0	
165.6	0	-0.03	-0.05	-0.03	0	0	0	-0.09	0	
178.2	0	-0.03	-0.04	-0.03	0	0	0	-0.08	0	
190.8	0	-0.03	-0.04	-0.03	0	0	0	-0.08	0	
203.4	0	-0.02	-0.03	-0.02	0	0	0	-0.07	0	
216	0	-0.02	-0.03	-0.02	0	0	0	-0.06	0	
228.6	0	-0.02	-0.03	-0.02	0	0	0	-0.05	0	
228.6	0	-0.02	-0.03	-0.02	0	0	0	-0.05	0	
"s"=	1	2	3	4	5	6	7	8	9	
Z	0	0.00	0.02	0.02	0	0	0	0.04	0	
241.2		-0.02	-0.02	-0.02				-0.04	0	
255.8		-0.01	-0.02	-0.01				-0.04	0	
200.4		-0.01	-0.02	-0.01				-0.03		
219	U	-0.01	-0.01	-0.01	U	U	U	-0.03	U	
279	0	-0.10	-0.14	-0.10	0	0	0	-0.28	0	
287.1	0	-0.10	-0.14	-0.10	0	0	0	-0.28	0	

	~		0.1.4	0.10	~			0 0 0	~
295.2	0	-0.10	-0.14	-0.10	0	0	0	-0.28	0
303.3	0	-0.10	-0.13	-0.10	0	0	0	-0.27	0
311.4	0	-0.10	-0.13	-0.10	0	0	0	-0.27	0
319.5	0	-0 10	-0.13	-0.10	0	0	0	-0.27	0
317.5	0	0.10	0.13	0.10	Ň	Ő	0	0.29	Ň
327.0	0	-0.10	-0.14	-0.10	0		0	-0.20	0
335.7	0	-0.10	-0.14	-0.10	0	0	0	-0.28	0
343.8	0	-0.10	-0.14	-0.10	0	0	0	-0.28	0
351.9	0	-0.10	-0.14	-0.10	0	0	0	-0.28	0
360	0	-0.10	-0.14	-0.10	0	0	0	-0.29	0
360	0	0.04	0.05	0.04	0	0	0	0.10	0
372	0	0.03	0.04	0.03	0	0	0	0.09	0
384	0	0.03	0.01	0.03	0	0	0	0.09	0
204	0	0.03	0.04	0.03	0		0	0.00	0
390	0	0.03	0.04	0.05	0	0	0	0.08	0
408	0	0.03	0.04	0.03	0	0	0	0.07	0
420	0	0.02	0.03	0.02	0	0	0	0.07	0
432	0	0.02	0.03	0.02	0	0	0	0.06	0
444	0	0.02	0.03	0.02	0	0	0	0.06	0
456	0	0.02	0.03	0.02	0	0	0	0.05	0
468	0	0.02	0.02	0.02	0	0	0	0.05	0
480	0	0.02	0.02	0.02	Õ	Ő	Ő	0.05	0
400	0	0.02	0.02	0.02	0	U	U	0.05	0
480	0	0.02	0.02	0.02	0	0	0	0.05	0
492	0	0.02	0.02	0.02	0	0	0	0.04	0
504	0	0.01	0.02	0.01	0	0	0	0.04	0
516	0	0.01	0.02	0.01	0	0	0	0.04	0
528	0	0.01	0.02	0.01	Ô	Ő	Ō	0.04	0
540	0	0.01	0.02	0.01	Õ	Ő	Ő	0.03	0
552	0	0.01	0.02	0.01	0	0	0	0.03	0
552	0	0.01	0.02	0.01	0	0	0	0.05	0
564	0	0.01	0.02	0.01	0	0	0	0.03	0
576	0	0.01	0.01	0.01	0	0	0	0.03	0
588	0	0.01	0.01	0.01	0	0	0	0.03	0
600	0	0.01	0.01	0.01	0	0	0	0.03	0
600	0	0.01	0.01	0.01	0	0	0	0.03	0
612	0	0.01	0.01	0.01	0	0	0	0.03	0
624	0	0.01	0.01	0.01	Õ	Ő	Ő	0.03	0
626	0	0.01	0.01	0.01	0	0	0	0.03	0
030	0	0.01	0.01	0.01	0	0	0	0.03	0
636	0	0.01	0.01	0.01	0	0	0	0.03	0
"s"=	1	2	3	4	5	6	7	8	9
Z									
648	0	0.01	0.01	0.01	0	0	0	0.03	0
660	0	0.01	0.01	0.01	0	0	0	0.03	0
672	0	0.01	0.01	0.01	0	0	0	0.03	0
684	Õ	0.01	0.01	0.01	Õ	Ő	õ	0.03	Õ
00 1	~	0.01	0.01	0.01	~	~	0	0.05	0

606	Δ	0.01	0.01	0.01	Δ		٥	0.03	Δ
709	0	0.01	0.01	0.01	0	0	0	0.03	0
708	0	0.01	0.02	0.01	0	0	0	0.03	0
720	U	0.01	0.02	0.01	U	U	U	0.05	U
720	0	-0.01	-0.01	-0.01	0	0	0	-0.02	0
732	0	-0.01	-0.01	-0.01	0	0	0	-0.02	0
744	Õ	-0.01	-0.01	-0.01	Õ	0	Ő	-0.02	Õ
756	Ő	-0.01	-0.01	-0.01	0	0	Ő	-0.02	Ő
768	Ő	0.00	-0.01	0.00	0	0	Ő	-0.01	0
780	0	0.00	-0.01	0.00	0	0	ŏ	-0.01	0
792	0	0.00	-0.01	0.00	0	0	Ő	-0.01	0
804	0	0.00	-0.01	0.00	0	0	0	0.01	0
004 016	0	0.00	-0.01	0.00	0	0	0	-0.01	0
010	0	0.00	-0.01	0.00	0	0	0	-0.01	0
020 040	0	0.00	0.00	0.00	0	0	0	-0.01	0
840	0	0.00	0.00	0.00	0	0	0	-0.01	0
840	0	0.00	0.00	0.00	0	0	0	-0.01	0
852	0	0.00	0.00	0.00	0	0	0	-0.01	0
864	Õ	0.00	0.00	0.00	Õ	Ő	Ő	-0.01	Õ
876	Õ	0.00	0.00	0.00	Õ	0	Ő	-0.01	Õ
888	Ő	0.00	0.00	0.00	0	0	Ő	-0.01	0
900	0	0.00	0.00	0.00	0	0	Ő	-0.01	0
912	0	0.00	0.00	0.00	0	0	0	-0.01	0
974	0	0.00	0.00	0.00	0	0	0	-0.01	0
036	0	0.00	0.00	0.00	0	0	0	-0.01	0
0/8	0	0.00	0.00	0.00	0	0	0	-0.01	0
060	0	0.00	0.00	0.00	0	0	0	-0.01	0
900	0	0.00	0.00	0.00	0	U	0	-0.01	0
960	0	0.00	0.00	0.00	0	0	0	-0.01	0
972	0	0.00	0.00	0.00	0	0	0	-0.01	0
984	0	0.00	0.00	0.00	0	0	0	-0.01	0
996	0	0.00	0.00	0.00	0	0	0	-0.01	0
1008	0	0.00	0.00	0.00	0	0	Ő	-0.01	0
1020	0	0.00	0.00	0.00	0	0	0	-0.01	0
1032	0	0.00	0.00	0.00	0	0	Ő	-0.01	0
1044	Ő	0.00	0.00	0.00	0	0	Ő	-0.01	0
1056	0	0.00	0.00	0.00	0	0	ŏ	-0.01	0
1050	0	0.00	0.00	0.00	0	0	Ő	-0.01	0
1000	0	0.00	0.00	0.00	0	0	0	-0.01	0
1000	U	0.00	0.00	0.00	U	U	U	-0.01	U
1080	0	0.00	0.00	0.00	0	0	0	0.00	0
1092	0	0.00	0.00	0.00	0	0	0	0.00	0
"s"=	1	2	3	4	5	6	7	8	9
Z	~				~	_	-		
1104	0	0.00	0.00	0.00	0	0	0	0.00	0

1116	0	0.00	0.00	0.00	0	0	0	0.00	0
1128	0	0.00	0.00	0.00	0	0	0	0.00	0
1140	0	0.00	0.00	0.00	0	0	0	0.00	0
1152	0	0.00	0.00	0.00	0	0	0	0.00	0
1164	0	0.00	0.00	0.00	0	0	0	0.00	0
1176	0	0.00	0.00	0.00	0	0	0	0.00	0
1188	0	0.00	0.00	0.00	0	0	0	0.00	0
1200	0	0.00	0.00	0.00	0	0	0	0.00	0
	0	0.00	0.00	0.00	0	0	0	0.00	0
1200	0	0.00	0.00	0.00	0	0	0	0.00	0
1212	0	0.00	0.00	0.00	0	0	0	0.00	0
1224	0	0.00	0.00	0.00	0	0	0	0.00	0
1236	0	0.00	0.00	0.00	0	0	0	0.00	0
1248	0	0.00	0.00	0.00	0	0	0	0.00	0
1260	0	0.00	0.00	0.00	0	0	0	0.00	0
1272	0	0.00	0.00	0.00	0	0	0	0.00	0
1284	0	0.00	0.00	0.00	0	0	0	0.00	0
1296	0	0.00	0.00	0.00	0	0	0	0.00	0
1308	0	0.00	0.00	0.00	0	0	0	0.00	0
1320	0	0.00	0.00	0.00	0	0	0	0.00	0
1320	0	0.00	0.00	0.00	0	0	0	0.00	0
1332	0	0.00	0.00	0.00	0	0	0	0.00	0
1344	0	0.00	0.00	0.00	0	0	0	0.00	0
1356	0	0.00	0.00	0.00	0	0	0	0.00	0
1368	0	0.00	0.00	0.00	0	0	0	0.00	0
1380	0	0.00	0.00	0.00	0	0	0	0.00	0
1392	0	0.00	0.00	0.00	0	0	0	0.00	0
1404	0	0.00	0.00	0.00	0	0	0	0.00	0
1416	0	0.00	0.00	0.00	0	0	0	0.00	0
1428	0	0.00	0.00	0.00	0	0	0	0.00	0
1440	0	0.00	0.00	0.00	0	0	0	0.00	0

Warping Normal Stresses, E*Wn*θ"									
Wn	53.66	25.26	0.00	- 25.26	- 53.66	0.00	143.45	0	-144
"s"=	1	2	3	4	5	6	7	8	9
Z									
0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
7.65	-0.10	-0.05	0.00	0.05	0.10	0.00	-0.26	0.00	0.27
15.3	-0.20	-0.09	0.00	0.09	0.20	0.00	-0.53	0.00	0.53
22.95	-0.30	-0.14	0.00	0.14	0.30	0.00	-0.80	0.00	0.80
30.6	-0.40	-0.19	0.00	0.19	0.40	0.00	-1.07	0.00	1.07
38.25	-0.50	-0.24	0.00	0.24	0.50	0.00	-1.34	0.00	1.34
"s"=	1	2	3	4	5	6	7	8	9

						1		1	
Z	0.55	0.00	0.00			0.00	4	0.00	4
45.9	-0.61	-0.28	0.00	0.28	0.61	0.00	-1.62	0.00	1.62
53.55	-0.71	-0.33	0.00	0.33	0.71	0.00	-1.90	0.00	1.90
61.2	-0.82	-0.39	0.00	0.39	0.82	0.00	-2.19	0.00	2.19
68.85	-0.93	-0.44	0.00	0.44	0.93	0.00	-2.48	0.00	2.48
76.5	-1.04	-0.49	0.00	0.49	1.04	0.00	-2.78	0.00	2.79
76.5	-1.04	-0.49	0.00	0.49	1.04	0.00	-2.78	0.00	2.79
84.15	-1.16	-0.55	0.00	0.55	1.16	0.00	-3.10	0.00	3.10
91.8	-1.28	-0.60	0.00	0.60	1.28	0.00	-3.42	0.00	3.42
99.45	-1.40	-0.66	0.00	0.66	1.40	0.00	-3.75	0.00	3.75
107.1	-1.53	-0.72	0.00	0.72	1.53	0.00	-4.09	0.00	4.09
114.75	-1.66	-0.78	0.00	0.78	1.66	0.00	-4.44	0.00	4.45
122.4	-1.80	-0.85	0.00	0.85	1.80	0.00	-4.81	0.00	4.81
130.05	-1.94	-0.91	0.00	0.91	1.94	0.00	-5.19	0.00	5.20
137.7	-2.09	-0.98	0.00	0.98	2.09	0.00	-5.59	0.00	5.60
145.35	-2.25	-1.06	0.00	1.06	2.25	0.00	-6.01	0.00	6.01
153	-2.41	-1.13	0.00	1.13	2.41	0.00	-6.44	0.00	6.44
153	-2.41	-1.13	0.00	1.13	2.41	0.00	-6.44	0.00	6.44
165.6	-2.23	-1.05	0.00	1.05	2.23	0.00	-5.96	0.00	5.97
178.2	-2.07	-0.97	0.00	0.97	2.07	0.00	-5.53	0.00	5.54
190.8	-1.93	-0.91	0.00	0.91	1.93	0.00	-5.15	0.00	5.15
203.4	-1.80	-0.85	0.00	0.85	1.80	0.00	-4.81	0.00	4.81
216	-1.69	-0.79	0.00	0.79	1.69	0.00	-4.51	0.00	4.51
228.6	-1.59	-0.75	0.00	0.75	1.59	0.00	-4.25	0.00	4.25
241.2	-1.50	-0.71	0.00	0.71	1.50	0.00	-4.02	0.00	4.02
253.8	-1.43	-0.67	0.00	0.67	1.43	0.00	-3.83	0.00	3.83
266.4	-1.37	-0.64	0.00	0.64	1.37	0.00	-3.66	0.00	3.67
279	-1.32	-0.62	0.00	0.62	1.32	0.00	-3.53	0.00	3.53
279	-1.32	-0.62	0.00	0.62	1.32	0.00	-3.53	0.00	3.53
287.1	-1.00	-0.47	0.00	0.47	1.00	0.00	-2.67	0.00	2.67
295.2	-0.68	-0.32	0.00	0.32	0.68	0.00	-1.81	0.00	1.81
303.3	-0.36	-0.17	0.00	0.17	0.36	0.00	-0.96	0.00	0.96
311.4	-0.04	-0.02	0.00	0.02	0.04	0.00	-0.12	0.00	0.12
319.5	0.27	0.13	0.00	-0.13	-0.27	0.00	0.73	0.00	-0.73
327.6	0.59	0.28	0.00	-0.28	-0.59	0.00	1.57	0.00	-1.58
335.7	0.91	0.43	0.00	-0.43	-0.91	0.00	2.43	0.00	-2.43
343.8	1.23	0.58	0.00	-0.58	-1.23	0.00	3.29	0.00	-3.29
351.9	1.56	0.73	0.00	-0.73	-1.56	0.00	4.16	0.00	-4.16
360	1.89	0.89	0.00	-0.89	-1.89	0.00	5.05	0.00	-5.05
360	1.89	0.89	0.00	-0.89	-1.89	0.00	5.05	0.00	-5.05
372	1.72	0.81	0.00	-0.81	-1.72	0.00	4.61	0.00	-4.61

204	1 5 7	0 5 4	0.00	0.74	1	0.00	1.01	0.00	4.0.1
384	1.57	0.74	0.00	-0.74	-1.57	0.00	4.21	0.00	-4.21
"s"=	1	2	3	4	5	6	7	8	9
Z									
396	1.44	0.68	0.00	-0.68	-1.44	0.00	3.84	0.00	-3.84
408	1.31	0.62	0.00	-0.62	-1.31	0.00	3.50	0.00	-3.50
420	1.19	0.56	0.00	-0.56	-1.19	0.00	3.18	0.00	-3.18
432	1.08	0.51	0.00	-0.51	-1.08	0.00	2.89	0.00	-2.89
444	0.98	0.46	0.00	-0.46	-0.98	0.00	2.62	0.00	-2.62
456	0.89	0.42	0.00	-0.42	-0.89	0.00	2.37	0.00	-2.37
468	0.80	0.38	0.00	-0.38	-0.80	0.00	2.14	0.00	-2.14
480	0.72	0.34	0.00	-0.34	-0.72	0.00	1.92	0.00	-1.92
480	0.72	0.34	0.00	-0.34	-0.72	0.00	1.92	0.00	-1.92
492	0.64	0.30	0.00	-0.30	-0.64	0.00	1.72	0.00	-1.72
504	0.57	0.27	0.00	-0.27	-0.57	0.00	1.53	0.00	-1.53
516	0.51	0.24	0.00	-0.24	-0.51	0.00	1.36	0.00	-1.36
528	0.44	0.21	0.00	-0.21	-0.44	0.00	1.19	0.00	-1.19
540	0.39	0.18	0.00	-0.18	-0.39	0.00	1.03	0.00	-1.03
552	0.33	0.16	0.00	-0.16	-0.33	0.00	0.88	0.00	-0.88
564	0.28	0.13	0.00	-0.13	-0.28	0.00	0.74	0.00	-0.74
576	0.22	0.11	0.00	-0.11	-0.22	0.00	0.60	0.00	-0.60
588	0.17	0.08	0.00	-0.08	-0.17	0.00	0.47	0.00	-0.47
600	0.13	0.06	0.00	-0.06	-0.13	0.00	0.34	0.00	-0.34
600	0.13	0.06	0.00	-0.06	-0.13	0.00	0.34	0.00	-0.34
612	0.08	0.04	0.00	-0.04	-0.08	0.00	0.21	0.00	-0.21
624	0.03	0.01	0.00	-0.01	-0.03	0.00	0.08	0.00	-0.08
636	-0.02	-0.01	0.00	0.01	0.02	0.00	-0.04	0.00	0.04
648	-0.06	-0.03	0.00	0.03	0.06	0.00	-0.17	0.00	0.17
660	-0.11	-0.05	0.00	0.05	0.11	0.00	-0.29	0.00	0.30
672	-0.16	-0.07	0.00	0.07	0.16	0.00	-0.42	0.00	0.42
684	-0.21	-0.10	0.00	0.10	0.21	0.00	-0.56	0.00	0.56
696	-0.26	-0.12	0.00	0.12	0.26	0.00	-0.69	0.00	0.69
708	-0.31	-0.15	0.00	0.15	0.31	0.00	-0.83	0.00	0.84
720	-0.37	-0.17	0.00	0.17	0.37	0.00	-0.98	0.00	0.98
720	-0.37	-0.17	0.00	0.17	0.37	0.00	-0.98	0.00	0.98
732	-0.34	-0.16	0.00	0.16	0.34	0.00	-0.90	0.00	0.90
744	-0.31	-0.14	0.00	0.14	0.31	0.00	-0.82	0.00	0.82
756	-0.28	-0.13	0.00	0.13	0.28	0.00	-0.75	0.00	0.75
768	-0.25	-0.12	0.00	0.12	0.25	0.00	-0.68	0.00	0.68
780	-0.23	-0.11	0.00	0.11	0.23	0.00	-0.62	0.00	0.62
792	-0.21	-0.10	0.00	0.10	0.21	0.00	-0.56	0.00	0.56
804	-0.19	-0.09	0.00	0.09	0.19	0.00	-0.51	0.00	0.51
816	-0.17	-0.08	0.00	0.08	0.17	0.00	-0.46	0.00	0.46

828	-0.16	-0.07	0.00	0.07	0.16	0.00	-0.42	0.00	0.42
840	-0.14	-0.07	0.00	0.07	0.14	0.00	-0.38	0.00	0.38
840	-0.14	-0.07	0.00	0.07	0.14	0.00	-0.38	0.00	0.38
"s"=	1	2	3	4	5	6	7	8	9
Z									
852	-0.13	-0.06	0.00	0.06	0.13	0.00	-0.34	0.00	0.34
864	-0.11	-0.05	0.00	0.05	0.11	0.00	-0.30	0.00	0.30
876	-0.10	-0.05	0.00	0.05	0.10	0.00	-0.27	0.00	0.27
888	-0.09	-0.04	0.00	0.04	0.09	0.00	-0.23	0.00	0.23
900	-0.08	-0.04	0.00	0.04	0.08	0.00	-0.20	0.00	0.20
912	-0.06	-0.03	0.00	0.03	0.06	0.00	-0.17	0.00	0.17
924	-0.05	-0.03	0.00	0.03	0.05	0.00	-0.15	0.00	0.15
936	-0.04	-0.02	0.00	0.02	0.04	0.00	-0.12	0.00	0.12
948	-0.03	-0.02	0.00	0.02	0.03	0.00	-0.09	0.00	0.09
960	-0.03	-0.01	0.00	0.01	0.03	0.00	-0.07	0.00	0.07
960	-0.03	-0.01	0.00	0.01	0.03	0.00	-0.07	0.00	0.07
972	-0.02	-0.01	0.00	0.01	0.02	0.00	-0.04	0.00	0.04
984	-0.01	0.00	0.00	0.00	0.01	0.00	-0.02	0.00	0.02
996	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1008	0.01	0.01	0.00	-0.01	-0.01	0.00	0.03	0.00	-0.03
1020	0.02	0.01	0.00	-0.01	-0.02	0.00	0.05	0.00	-0.05
1032	0.03	0.01	0.00	-0.01	-0.03	0.00	0.08	0.00	-0.08
1044	0.04	0.02	0.00	-0.02	-0.04	0.00	0.10	0.00	-0.10
1056	0.05	0.02	0.00	-0.02	-0.05	0.00	0.13	0.00	-0.13
1068	0.06	0.03	0.00	-0.03	-0.06	0.00	0.16	0.00	-0.16
1080	0.07	0.03	0.00	-0.03	-0.07	0.00	0.18	0.00	-0.18
1080	0.07	0.03	0.00	-0.03	-0.07	0.00	0.18	0.00	-0.18
1092	0.06	0.03	0.00	-0.03	-0.06	0.00	0.17	0.00	-0.17
1104	0.06	0.03	0.00	-0.03	-0.06	0.00	0.15	0.00	-0.15
1116	0.05	0.02	0.00	-0.02	-0.05	0.00	0.14	0.00	-0.14
1128	0.05	0.02	0.00	-0.02	-0.05	0.00	0.13	0.00	-0.13
1140	0.04	0.02	0.00	-0.02	-0.04	0.00	0.12	0.00	-0.12
1152	0.04	0.02	0.00	-0.02	-0.04	0.00	0.11	0.00	-0.11
1164	0.04	0.02	0.00	-0.02	-0.04	0.00	0.10	0.00	-0.10
1176	0.03	0.02	0.00	-0.02	-0.03	0.00	0.09	0.00	-0.09
1188	0.03	0.01	0.00	-0.01	-0.03	0.00	0.08	0.00	-0.08
1200	0.03	0.01	0.00	-0.01	-0.03	0.00	0.08	0.00	-0.08
1200	0.03	0.01	0.00	-0.01	-0.03	0.00	0.08	0.00	-0.08
1212	0.03	0.01	0.00	-0.01	-0.03	0.00	0.07	0.00	-0.07
1224	0.02	0.01	0.00	-0.01	-0.02	0.00	0.06	0.00	-0.06
1236	0.02	0.01	0.00	-0.01	-0.02	0.00	0.06	0.00	-0.06
1248	0.02	0.01	0.00	-0.01	-0.02	0.00	0.05	0.00	-0.05

							r		
1260	0.02	0.01	0.00	-0.01	-0.02	0.00	0.05	0.00	-0.05
1272	0.02	0.01	0.00	-0.01	-0.02	0.00	0.04	0.00	-0.04
1284	0.01	0.01	0.00	-0.01	-0.01	0.00	0.04	0.00	-0.04
1296	0.01	0.01	0.00	-0.01	-0.01	0.00	0.03	0.00	-0.03
1308	0.01	0.01	0.00	-0.01	-0.01	0.00	0.03	0.00	-0.03
"s"=	1	2	3	4	5	6	7	8	9
Z									
1320	0.01	0.00	0.00	0.00	-0.01	0.00	0.03	0.00	-0.03
1320	0.01	0.00	0.00	0.00	-0.01	0.00	0.03	0.00	-0.03
1332	0.01	0.00	0.00	0.00	-0.01	0.00	0.02	0.00	-0.02
1344	0.01	0.00	0.00	0.00	-0.01	0.00	0.02	0.00	-0.02
1356	0.01	0.00	0.00	0.00	-0.01	0.00	0.02	0.00	-0.02
1368	0.01	0.00	0.00	0.00	-0.01	0.00	0.01	0.00	-0.02
1380	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	-0.01
1392	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	-0.01
1404	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	-0.01
1416	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1428	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1440	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

BIBLIOGRAPHY

- Åkesson, B. Å., <u>Discussion to Warping Moment Distributions by J. S. Medwadowski</u>. Journal of Structural Engineering, ASCE 113(1); 169-70, 1987.
- Bleich, F., <u>Buckling Strength of Metal Structures</u>, Second Edition. McGraw-Hill Book Co., Inc.: New York, 1952.
- Boothby, T. E., <u>The Applications of Flexural Methods to Torsional Analysis of Thin-</u> <u>Walled Open Sections</u>. Engineering Journal, AISC, 21 (4), Chicago, IL, 1984.
- Bresler, B., Lin, T. Y., <u>Design of Steel Structures</u>. Second Edition. John Wiley & Sons, Inc.: New York, London, 1963.
- Carlson, A., Hannauer, G., Carey, T., Holsberg, P. J., <u>Handbook of Analog Computation</u>, Second Edition. Electronic Associates, Inc.: Princeton, New Jersey, 1967.
- Chaudbary, A. B., <u>Generalized Stiffness Matrix for Thin Walled Beams</u>. Journal of the Structural Division, ASCE Proceedings, 108 (3); 1982.
- Cisek, P., <u>Beyond the Computer Metaphor: Behaviour as Interaction</u>. Journal of Consciousness Studies, 6 (11-12); 125-42, 1999.
- Cross H., <u>Analysis of Continuous Frames by Distributing Fixed Moments</u>. ASCE Proceedings, 57; 919–928, 1930.
- Cross H., <u>Analysis of Continuous Frames by Distributing Fixed Moments</u>. ASCE Transactions, 96; 1–10, 1932.
- Cross H., <u>Continuous Frames of Reinforced Concrete</u>. Thirteenth Printing. John Wiley & Sons, Inc.: New York, 1954.
- Dabrowski, R., <u>Equations of Bending and Torsion of a Curved Thin-Walled Bar with</u> <u>Asymmetric Cross-Section</u>. Archives of Mechanics, 12 (5-6), 1960.
- Den Hartog, J. P., <u>Advanced Strength of Materials</u>. McGraw-Hill Book Company, Inc.: USA, 1952.
- Deschapelles, B., <u>Discussion to Frame Analysis of Shear Wall Cores by Iain A.</u> <u>MacLeod</u>. Journal of Structural Division, ASCE, 104 (ST9), 1978.
- Deschapelles, B., <u>A Hybrid 8 DOF Plane Stress Element for the Analysis of Non-Planar</u> <u>Shear Walls</u>. paper presented at the Tall Building Council Meeting: New Orleans, La, 1984.

- Deschapelles, B., <u>Discussion to The Applications of Flexural Methods to Torsional</u> <u>Analysis of Thin-Walled Open Sections by T.E. Boothby</u>. Engineering Journal, AISC, 22(4); 176-77, 1985.
- Deschapelles, B., <u>Discussion to Warping Moment Distributions by J.S. Medwadowski</u>. Journal of Structural Engineering, ASCE 113(1), 170-72, 1987.
- Deschapelles, B., <u>Refined Beam Finite Element with a Non Nodal Degree of Freedom</u>. 15th ASCE Engineering Mechanics Conference, Columbia University: New York, 2002.
- Deschapelles, B., Class Notes and Files. Puerto Rico, 2009-2011.
- Dvorkin, E. N., Celentano, D. et al., <u>A Vlasov Beam Element</u>. Instituto de Materiales y Estructuras, Facultad de Ingeniería, Universidad de Buenos Aires, 1988.
- Feodosiev, V. I., <u>Resistencia de Materiales</u>. Editorial MIR: URSS, 1972.
- Gere, J. M., <u>Moment Distribution</u>. D. Van Nostrand Company, Inc.: Princeton, N.J., 1963.
- Gjelsvik, A., <u>Guide to Stability Design Criteria for Metal Structures</u>. Fourth Edition. John Wiley & Sons, Inc.: New York, N. Y., 1981.
- Goodier, J. N., <u>Torsional and Flexural Buckling of Bars of Thin-Walled Open Section</u> <u>under Compressive and Bending Loads</u>. Journal of Applied Mechanics, ASME 9 (9); A103-A107, 1942.
- Grinter L. E., Discussion to paper by H. Cross. ASCE Transactions, 96:11-20, 1932.
- Grinter L. E., Wind stress analysis simplified. ASCE Proceedings, 59:3-27, 1933
- Heins, C. P., Seaburg, P. A., <u>Steel Design File-Torsion Analysis of Rolled Steel Sections</u>. Bethlehem Steel Corporation: Bethlehem, Pennsylvania, 1963.
- Heins, C. P., <u>Bending and Torsional Design in Structural Members</u>. Lexington Books: Lexington, Massachusetts, 1975.
- Heins, C. P., Hall, D. H., <u>Designer's Guide to Steel Box Girder Bridges</u>. First Edition. Bethlehem Steel Corporation, Bethlehem, Pennsylvania, 1981.
- Herbsleb, J. D., <u>Metaphorical Representation in Collaborative Software Engineering</u>. Bell Laboratories, Lucent Technologies: San Francisco, CA, USA, 1999.
- Hetényi, M., <u>Beams on Elastic Foundation</u>. Six Printing. Ann Harbor, The University of Michigan Press: Michigan, 1961.

- Hetényi, M., <u>Beams and Plates on Elastic Foundations and Related Problems</u>. Applied Mechanics Reviews. American Society of Mechanical Engineers, 19 (2); 95-102, 1966.
- Hetényi, M., <u>Handbook of Experimental Stress Analysis</u>. Chapter 16 on Analogies by Mindlin, R. D. and Salvadori M. G., Six Printing. John Wiley and Sons: New York, London, Sydney, 1966.
- Hoogenboom P.C.J., Borgart A., <u>Method for Including Restrained Warping in Traditional</u> <u>Frame Analyses</u>. HERON, 50 (1) 55-68, 2005. Erratum in HERON, 50 (3); 185, 2005.
- Hrennikoff, A., <u>Solutions of Problems in Elasticity by the Framework Method</u>. Journal of Applied Mechanics, 8 (4) 169-175, 1941.
- Hsu, Y. T., et al., <u>EBEF Method for Distortional Analysis of Steel Box Girder Bridges</u>. Journal of Structural Engineering, 121 (3), 1995.
- James, M. L., Smith, G. M., Wolforf, J. C., <u>Analog Computer Simulation of Engineering</u> <u>Systems</u>. Second Edition. Intext Educational Publishers, College division of Intext: Scranton, San Francisco, Toronto, London, 1971.
- Kron, G., Tensor Analysis of Networks. John Wiley & Sons, Inc., London, 1939.
- Ligthfoot, E., <u>Moment Distribution, a Rapid Method of analysis for Rigid-Jointed</u> <u>Structures</u>. John Wiley and Sons: New York, 1961.
- Lundquist E. E., Fligg C. M., <u>A Theory for Primary Failure of Straight Centrally Loaded</u> <u>Columns</u>. N.A.C.A. Technical Report No. 582, 1937.
- McHenry, D., <u>A Lattice Analogy for the Solution of Stress Problems</u>. Technical Memorandum No. 624, U. S. Bureau of Reclamation, 1942.
- McHenry, D., <u>The Numerical Solution of Two-Dimensional Problems in Elasticity by a</u> <u>Lattice Analogy</u>. Journal of the Institution of Civil Engineers, No. 2. 1943-1944, 1943.
- Medwadowski, J. S., <u>Warping Moment Distribution</u>. Journal of Structural Engineering, Vol. 111 No.2, ASCE, 1985.
- Mindlin, R. D., and Salvadori, M. G., <u>Analogies, Chapter 16, Handbook on Experimental</u> <u>Stress Analysis</u> edited by M. Hetényi, Sixth printing. John Wiley and Sons: New York, London, Sydney, 1966.

- Miranda, C., Nair, K., <u>Finite Beams on Elastic Foundation</u>. Journal of the Structural Division, ASCE Proceedings, 92 (ST2), 1966.
- Obrébski, J. B., <u>Some Own Approaches to Computer Aided Design of Complicated Bar</u> <u>Structures</u>. Faculty of Civil Engineering, Warsaw University of Technology, Al. Armii Ludowej 16, r. 143: Warsaw, Poland, 2005.
- Ojalvo, M., <u>Wagner Hypothesis in Beam and Column Theory</u>. Journal of the Engineering Mechanics Division, ASCE Proceedings, 107 (EM4), 1981.
- Ojalvo, M., <u>Clossure of Wagner Hypothesis in Beam and Column Theory by Ojalvo</u>. Journal of the Engineering Mechanics Division, ASCE Proceedings, 108 (3), 1982
- Ojalvo, M., <u>Thin-Walled bars with Open Profiles</u>. The Olive Press: Columbus, Ohio, 1990.
- Pettersson, O., <u>Method of successive approximations for design of continuous I beams</u> <u>submitted to torsion</u>. Publications of the International Association for Bridge and Structural Engineering, 15; 167-186, 1955.
- Rekach, V. G., Problemas de la Teoría de Elasticidad. Editorial MIR: URSS, 1978.
- Roark, R., Young, W.C., <u>Roark's Formulas of Stress & Strain</u>, Fifth Edition. McGraw-Hill: New York, USA, 1982.
- Rhodes, J., Walker, A. C., <u>Developments in Thin Walled Structures-2</u>. Elsevier Applied Science Publishers: London and New York, 1984.
- Rhodes, J., Walker, A. C., Editors, <u>Developments in Thin Walled Structures-3</u>. Elsevier Applied Science Publishers: London and New York, 1987.
- Saadeé, K., <u>Finite Element Modeling of Shear in Thin Walled Beams with a Single</u> <u>Warping Function</u>. Universite Libre De Bruxelles, Faculté des Sciences Appliquées, Services des Milieux Continus & Génie Civil, Dissertation originale présentée en vue de l'obtention du grade de docteur en Sciences Appliquées, 2004-2005.
- Seaburg, P. A., Carter, C. J., <u>Torsional Analysis of Structural Steel Members</u>. Second Printing. AISC: USA, 1997.
- Samuelsson, A., and Zienkiewicz, O. C., <u>History of the Stiffness Method</u>. International Journal for Numerical Methods in Engineering; 67:149–157, 2006.
- Southwell R. V., <u>Stress calculation in frameworks by the method of 'systematic</u> <u>relaxation of constraints'</u>. Part I & II. Proceedings of the Royal Society of London, Series A, 151:56–95, 1935.

- Terzaghi, K., Peck, R.B., <u>Mecánica de suelos en la ingeniería práctica</u>. Segunda edición. Librería "El Ateneo" Editorial: Argentina, Buenos Aires, 1973.
- Trahair, N. S., et al., <u>The behavior and Design of Steel Structures to EC3</u>. Fourth Edition. Taylor & Francis: London and New York, 2008.
- Timoshenko, S., <u>Theory of Elasticity</u>, First Edition, Tenth Impression. McGraw-Hill Book Company, Inc.: New York and London, 1934.
- Timoshenko, S., <u>Theory of Bending, Torsion and Buckling of Thin-Walled Members of</u> <u>Open Cross-Section</u>. Journal of the Franklin Institute, March/April/May, Philadelphia, PA, 1945.
- Timoshenko, S., <u>History of Strength of Materials</u>. McGraw-Hill Book Company, Inc.: N.Y., 1953.
- Timoshenko, S., <u>Resistencia de Materiales, Segunda Parte</u>. Espasa-Calpe, S.A.: Madrid, España, 1978.
- Timoshenko, S., Gere, J., <u>Theory of Elastic Stability</u>. Unabridged republication of the second edition. Dover Edition: New York, 2009.
- Timoshenko, S., and Goodier, J. N., <u>Theory of Elasticity</u>, Second Edition. Engineering Society Monographs. McGraw-Hill Book Company, Inc.: New York, Toronto, London, 1951.
- Ugural, A.C., Fenster, S.K., <u>Advanced Strength and Applied Elasticity</u>. Second SI Edition. Prentice-Hall Inc.: New Jersey, 1987.
- Vlasov, V. Z., <u>Thin-Walled Elastic Beams</u>. Second edition, NSF, Washington D. C. and the Department of Commerce, USA, by the Israel Program for Scientific Translations: Jerusalem, 1961.
- Wagner, H., <u>Torsion and Buckling of Open Sections</u>. National Advisory Committee for Aeronautics. Technical Memorandum No. 807, Washington, 1936, Translated from Technische Hochschule, 1929.
- Wilkinson, J. H., <u>Rounding Errors in Algebraic Processes</u>. Prentice Hall, Inc., Englewood Cliffs.: NJ, 1963.
- Wright, R. N., Abdel-Samad, S.R., <u>BEF Analogy for Analysis of Box Girders</u>. Journal of the Structural Division, ASCE, 94 (ST 7), Proc. Paper 6025, 1968.

